References of "Louvard, D"
     in
Bookmark and Share    
Peer Reviewed
See detailActA and human zyxin harbour Arp2/3-independent actin-polymerization activity.
Fradelizi, J.; Noireaux, V.; Plastino, J. et al

in Nature cell biology (2001), 3(8), 699-707

The actin cytoskeleton is a dynamic network that is composed of a variety of F-actin structures. To understand how these structures are produced, we tested the capacity of proteins to direct actin ... [more ▼]

The actin cytoskeleton is a dynamic network that is composed of a variety of F-actin structures. To understand how these structures are produced, we tested the capacity of proteins to direct actin polymerization in a bead assay in vitro and in a mitochondrial-targeting assay in cells. We found that human zyxin and the related protein ActA of Listeria monocytogenes can generate new actin structures in a vasodilator-stimulated phosphoprotein-dependent (VASP) manner, but independently of the Arp2/3 complex. These results are consistent with the concept that there are multiple actin-polymerization machines in cells. With these simple tests it is possible to probe the specific function of proteins or identify novel molecules that act upon cellular actin polymerization. [less ▲]

Detailed reference viewed: 42 (0 UL)
Peer Reviewed
See detailTargeting of zyxin to sites of actin membrane interaction and to the nucleus.
Nix, D. A.; Fradelizi, J.; Bockholt, S. et al

in The Journal of biological chemistry (2001), 276(37), 34759-67

The localization of proteins to particular intracellular compartments often regulates their functions. Zyxin is a LIM protein found prominently at sites of cell adhesion, faintly in leading lamellipodia ... [more ▼]

The localization of proteins to particular intracellular compartments often regulates their functions. Zyxin is a LIM protein found prominently at sites of cell adhesion, faintly in leading lamellipodia, and transiently in cell nuclei. Here we have performed a domain analysis to identify regions in zyxin that are responsible for targeting it to different subcellular locations. The N-terminal proline-rich region of zyxin, which harbors binding sites for alpha-actinin and members of the Ena/VASP family, concentrates in lamellipodial extensions and weakly in focal adhesions. The LIM region of zyxin displays robust targeting to focal adhesions. When overexpressed in cells, the LIM region of zyxin causes displacement of endogenous zyxin from focal adhesions. Upon mislocalization of full-length zyxin, at least one member of the Ena/VASP family is also displaced, and the organization of the actin cytoskeleton is perturbed. Zyxin also has the capacity to shuttle between the nucleus and focal adhesion sites. When nuclear export is inhibited, zyxin accumulates in cell nuclei. The nuclear accumulation of zyxin occurs asynchronously with approximately half of the cells exhibiting nuclear localization of zyxin within 2.3 h of initiating leptomycin B treatment. Our results provide insight into the functions of different zyxin domains. [less ▲]

Detailed reference viewed: 53 (0 UL)
Peer Reviewed
See detailCharacterization of the interaction between zyxin and members of the Ena/vasodilator-stimulated phosphoprotein family of proteins.
Drees, B.; Friederich, Evelyne UL; Fradelizi, J. et al

in The Journal of biological chemistry (2000), 275(29), 22503-11

Zyxin contains a proline-rich N-terminal domain that is similar to the C-terminal domain in the ActA protein of the bacteria, Listeria monocytogenes. We screened the entire amino acid sequence of human ... [more ▼]

Zyxin contains a proline-rich N-terminal domain that is similar to the C-terminal domain in the ActA protein of the bacteria, Listeria monocytogenes. We screened the entire amino acid sequence of human zyxin for Mena-interacting peptides and found that, as with ActA, proline-rich sequences were the sole zyxin sequences capable of binding to Ena/vasodilator-stimulated phosphoprotein (VASP) family members in vitro. From this information, we tested zyxin mutants in which the proline-rich sequences were altered. The reduction in Mena/VASP binding was confirmed by peptide tests, immunoprecipitation, and ectopic expression of zyxin variants at the surface of mitochondria. By transfection assays we showed that zyxin interaction with Mena/VASP in vivo enhances the production of actin-rich structures at the apical surface of cells. Microinjection into cells of peptides corresponding to the first proline-rich sequence of zyxin caused the loss of Mena/VASP from focal contacts. Furthermore, these peptides reduced the degree of spreading of cells replated after trypsinization. We conclude that zyxin and proteins that harbor similar proline-rich repeats contribute to the positioning of Mena/VASP proteins. The positioning of Ena/VASP family members appears to be important when the actin cytoskeleton is reorganized, such as during spreading. [less ▲]

Detailed reference viewed: 38 (0 UL)
Peer Reviewed
See detailGrowing an actin gel on spherical surfaces.
Noireaux, V.; Golsteyn, R. M.; Friederich, Evelyne UL et al

in Biophysical journal (2000), 78(3), 1643-54

Inspired by the motility of the bacteria Listeria monocytogenes, we have experimentally studied the growth of an actin gel around spherical beads grafted with ActA, a protein known to be the promoter of ... [more ▼]

Inspired by the motility of the bacteria Listeria monocytogenes, we have experimentally studied the growth of an actin gel around spherical beads grafted with ActA, a protein known to be the promoter of bacteria movement. On ActA-grafted beads F-actin is formed in a spherical manner, whereas on the bacteria a "comet-like" tail of F-actin is produced. We show experimentally that the stationary thickness of the gel depends on the radius of the beads. Moreover, the actin gel is not formed if the ActA surface density is too low. To interpret our results, we propose a theoretical model to explain how the mechanical stress (due to spherical geometry) limits the growth of the actin gel. Our model also takes into account treadmilling of actin. We deduce from our work that the force exerted by the actin gel on the bacteria is of the order of 10 pN. Finally, we estimate from our theoretical model possible conditions for developing actin comet tails. [less ▲]

Detailed reference viewed: 69 (0 UL)
Peer Reviewed
See detailLPP, an actin cytoskeleton protein related to zyxin, harbors a nuclear export signal and transcriptional activation capacity.
Petit, M. M.; Fradelizi, J.; Golsteyn, R. M. et al

in Molecular biology of the cell (2000), 11(1), 117-29

The LPP gene is the preferred translocation partner of the HMGIC gene in a subclass of human benign mesenchymal tumors known as lipomas. Here we have characterized the LPP gene product that shares 41% of ... [more ▼]

The LPP gene is the preferred translocation partner of the HMGIC gene in a subclass of human benign mesenchymal tumors known as lipomas. Here we have characterized the LPP gene product that shares 41% of sequence identity with the focal adhesion protein zyxin. LPP localizes in focal adhesions as well as in cell-to-cell contacts, and it binds VASP, a protein implicated in the control of actin organization. In addition, LPP accumulates in the nucleus of cells upon treatment with leptomycin B, an inhibitor of the export factor CRM1. The nuclear export of LPP depends on an N-terminally located leucine-rich sequence that shares sequence homology with well-defined nuclear export signals. Moreover, LPP displays transcriptional activation capacity, as measured by GAL4-based assays. Altogether, these results show that the LPP protein has multifunctional domains and may serve as a scaffold upon which distinct protein complexes are assembled in the cytoplasm and in the nucleus. [less ▲]

Detailed reference viewed: 56 (0 UL)
Peer Reviewed
See detailExpression patterns of L-plastin isoform in normal and carcinomatous breast tissues.
Lapillonne, A.; Coue, O.; Friederich, Evelyne UL et al

in Anticancer research (2000), 20(5A), 3177-82

Plastins are members of a family of actin-binding proteins which exhibit a tissue-specific expression pattern. L-plastin, which is specifically expressed in hematopoietic cell lineage, has been proposed ... [more ▼]

Plastins are members of a family of actin-binding proteins which exhibit a tissue-specific expression pattern. L-plastin, which is specifically expressed in hematopoietic cell lineage, has been proposed to be involved in the control of cell adhesion and motility. This protein is also frequently expressed in cell lines derived from mammary solid tumors and therefore might be involved in cancer invasion and metastasis. We have analysed plastin expression in normal and carcinomatous breast tissues in vivo by immunohistochemistry and immunoblotting approaches using specific plastin isoform antibodies. L-plastin was not detected in normal epithelial cells of the mammary gland whereas a staining of myoepithelial cells was observed in 50% of the cases. In breast carcinomas, a significant immunostaining of malignant epithelial cells was observed in 4 of the 29 cases analysed (13.8%). No correlation between L-plastin expression and tumor size, histological grade or lymph node status was observed. In contrast, L-plastin was found expressed in 4 of the 11 estrogen and progesterone receptors negative tumors (p = 0.039). The potential role of plastin expression in the tumor process is discussed. [less ▲]

Detailed reference viewed: 34 (1 UL)
Peer Reviewed
See detailVillin-like actin-binding proteins are expressed ubiquitously in Arabidopsis.
Klahre, U.; Friederich, Evelyne UL; Kost, B. et al

in Plant physiology (2000), 122(1), 35-48

In an attempt to elucidate the biological function of villin-like actin-binding proteins in plants we have cloned several genes encoding Arabidopsis proteins with high homology to animal villin. We found ... [more ▼]

In an attempt to elucidate the biological function of villin-like actin-binding proteins in plants we have cloned several genes encoding Arabidopsis proteins with high homology to animal villin. We found that Arabidopsis contains at least four villin-like genes (AtVLNs) encoding four different VLN isoforms. Two AtVLN isoforms are more closely related to mammalian villin in their primary structure and are also antigenically related, whereas the other two contain significant changes in the C-terminal headpiece domain. RNA and promoter/beta-glucuronidase expression studies demonstrated that AtVLN genes are expressed in all organs, with elevated expression levels in certain types of cells. These results suggest that AtVLNs have less-specialized functions than mammalian villin, which is found only in the microvilli of brush border cells. Immunoblot experiments using a monoclonal antibody against pig villin showed that AtVLNs are widely distributed in a variety of plant tissues. Green fluorescent protein fused to full-length AtVLN and individual AtVLN headpiece domains can bind to both animal and plant actin filaments in vivo. [less ▲]

Detailed reference viewed: 46 (0 UL)
Peer Reviewed
See detailVillin function in the organization of the actin cytoskeleton. Correlation of in vivo effects to its biochemical activities in vitro.
Friederich, Evelyne UL; Vancompernolle, K.; Louvard, D. et al

in The Journal of biological chemistry (1999), 274(38), 26751-60

Villin is an actin-binding protein of the intestinal brush border that bundles, nucleates, caps, and severs actin in a Ca(2+)-dependent manner in vitro. Villin induces the growth of microvilli in ... [more ▼]

Villin is an actin-binding protein of the intestinal brush border that bundles, nucleates, caps, and severs actin in a Ca(2+)-dependent manner in vitro. Villin induces the growth of microvilli in transfected cells, an activity that requires a carboxyl-terminally located KKEK motif. By combining cell transfection and biochemical assays, we show that the capacity of villin to induce growth of microvilli in cells correlates with its ability to bundle F-actin in vitro but not with its nucleating activity. In agreement with its importance for microfilament bundling in cells, the KKEK motif of the carboxyl-terminal F-actin-binding site is crucial for bundling in vitro. In addition, substitutions of basic residues in a second site, located in the amino-terminal portion of villin, impaired its activity in cells and reduced its binding to F-actin in the absence of Ca(2+) as well as its bundling and severing activities in vitro. Altogether, these findings suggest that villin participates in the organization and stabilization of the brush border core bundle but does not initiate its assembly by nucleation of actin filaments. [less ▲]

Detailed reference viewed: 25 (0 UL)
Peer Reviewed
See detailThe role of actin binding proteins in epithelial morphogenesis: models based upon Listeria movement.
Golsteyn, R. M.; Louvard, D.; Friederich, Evelyne UL

in Biophysical chemistry (1997), 68(1-3), 73-82

We summarize recent findings on the organization of the protein actin in eucaryotic cells. In particular we focus on how actin can be used to generate a vectorial force that is required for cell movement ... [more ▼]

We summarize recent findings on the organization of the protein actin in eucaryotic cells. In particular we focus on how actin can be used to generate a vectorial force that is required for cell movement. These forces arise from protein molecules that recruit actin to the plasma membrane in such a manner that actin filaments extend outward from the cell body. This type of actin dependent force generation has been described in a nucleation-release model, which is one of several models currently being tested to explain actin dependent cell movement. Data in support of this model has arisen unexpectedly from studies of an intracellular bacteria, Listeria monocytogenes. This bacteria uses actin to propel itself during infection of eucaryotic cells. By studying Listeria movement, the roles of several eucaryotic actin interacting proteins have been identified. One of these is zyxin, a human protein that shares important structural and possibly functional properties with ActA, an actin dependent force generating protein of Listeria. We intend to test the function of these and other actin interacting proteins in a simplified system that should facilitate precise measurement of their properties of force generation in vitro. [less ▲]

Detailed reference viewed: 41 (0 UL)
Peer Reviewed
See detailTargeting of Listeria monocytogenes ActA protein to the plasma membrane as a tool to dissect both actin-based cell morphogenesis and ActA function.
Friederich, Evelyne UL; Gouin, E.; Hellio, R. et al

in The EMBO journal (1995), 14(12), 2731-44

Actin assembly on the surface of Listeria monocytogenes in the cytoplasm of infected cells provides a model to study actin-based motility and changes in cell shape. We have shown previously that the ActA ... [more ▼]

Actin assembly on the surface of Listeria monocytogenes in the cytoplasm of infected cells provides a model to study actin-based motility and changes in cell shape. We have shown previously that the ActA protein, exposed on the bacterial surface, is required for polarized nucleation of actin filaments. To investigate whether plasma membrane-associated ActA can control the organization of microfilaments and cell shape, variants of ActA, in which the bacterial membrane signal had been replaced by a plasma membrane anchor sequence, were produced in mammalian cells. While both cytoplasmic and membrane-bound forms of ActA increased the F-actin content, only membrane-associated ActA caused the formation of plasma membrane extensions. This finding suggests that ActA acts as an actin filament nucleator and shows that permanent association with the inner face of the plasma membrane is required for changes in cell shape. Based on the observation that the amino-terminal segment of ActA and the remaining portion which includes the proline-rich repeats cause distinct phenotypic modifications in transfected cells, we propose a model in which two functional domains of ActA cooperate in the nucleation and dynamic turnover of actin filaments. The present approach is a new model system to dissect the mechanism of action of ActA and to further investigate interactions of the plasma membrane and the actin cytoskeleton during dynamic changes of cell shape. [less ▲]

Detailed reference viewed: 41 (0 UL)
Peer Reviewed
See detailConformational behaviour of a synthetic peptide of the C-terminus of villin that interacts with actin: an NMR, CD and stimulated annealing study.
Simenel, C.; Rose, T.; Goethals, M. et al

in International journal of peptide and protein research (1995), 45(6), 574-86

The solution structure of a synthetic 22-amino acid peptide (P1) corresponding to the extreme C-terminal end and one of the F-actin binding sites of villin has been determined by 1H NMR and CD ... [more ▼]

The solution structure of a synthetic 22-amino acid peptide (P1) corresponding to the extreme C-terminal end and one of the F-actin binding sites of villin has been determined by 1H NMR and CD spectroscopy. The structure of this peptide was compared to that of a peptide in which lysine to glutamic acid substitutions were introduced at positions 17 and 19 (P11), abolishing F-actin binding. Both peptides are largely unstructured in aqueous solution. Changes observed in the NMR and CD spectra of both peptides are consistent with alpha-helix formation in trifluoroethanol/water mixtures. A set of 189 interproton distances derived from nuclear Overhauser enhancement (NOE) measurements, 17 phi-angle constraints obtained from 3JNH alpha coupling constants, as well as about 10 N ... O distance restraints deduced from amide proton exchange kinetics with deuterium, were used for the structure determination. The three-dimensional structure of P1 and P11 is characterized by two helical regions, one extending from residues 2 to 5 and a second covering residues 7 to 17. The central fragment, ranging from Leu-7 to Leu-15, is more stable. The C-terminal residues are less structured, particularly within peptide P11. The significance of these structural results is discussed in relation to the biological activity of villin. [less ▲]

Detailed reference viewed: 28 (0 UL)
Peer Reviewed
See detailFunctional differences between L- and T-plastin isoforms.
Arpin, M.; Friederich, Evelyne UL; Algrain, M. et al

in The Journal of cell biology (1994), 127(6 Pt 2), 1995-2008

Fimbrins/plastins are a family of highly conserved actin-bundling proteins. They are present in all eukaryotic cells including yeast, but each isoform displays a remarkable tissue specificity. T-plastin ... [more ▼]

Fimbrins/plastins are a family of highly conserved actin-bundling proteins. They are present in all eukaryotic cells including yeast, but each isoform displays a remarkable tissue specificity. T-plastin is normally found in epithelial and mesenchymal cells while L-plastin is present in hematopoietic cells. However, L-plastin has been also found in tumor cells of non-hematopoietic origin (Lin, C.-S., R. H. Aebersold, S. B. Kent, M. Varma, and J. Leavitt. 1988. Mol. Cell. Biol. 8:4659-4668; Lin, C.-S., R. H. Aebersold, and J. Leavitt. 1990. Mol. Cell. Biol. 10: 1818-1821). To learn more about the biological significance of their tissue specificity, we have overproduced the T- and L-plastin isoforms in a fibroblast-like cell line, CV-1, and in a polarized epithelial cell line, LLC-PK1. In CV-1 cells, overproduction of T- and L-plastins induces cell rounding and a concomitant reorganization of actin stress fibers into geodesic structures. L-plastin remains associated with microfilaments while T-plastin is almost completely extracted after treatment of the cells with non-ionic detergent. In LLC-PK1 cells, T-plastin induces shape changes in microvilli and remains associated with microvillar actin filaments after detergent extraction while L-plastin has no effect on these structures and is completely extracted. The effect of T-plastin on the organization of microvilli differs from that of villin, another actin-bundling protein. Our experiments indicate that these two isoforms play differing roles in actin filament organization, and do so in a cell type-specific fashion. Thus it is likely that these plastin isoforms play fundamentally different roles in cell function. [less ▲]

Detailed reference viewed: 48 (0 UL)
Peer Reviewed
See detailVillin-induced growth of microvilli is reversibly inhibited by cytochalasin D.
Friederich, Evelyne UL; Kreis, T. E.; Louvard, D.

in Journal of cell science (1993), 105 ( Pt 3)

Villin is an actin-binding protein that is associated with the cytoskeleton of brush border microvilli. In vitro, villin nucleates, caps or severs actin filaments in a Ca(2+)-dependent manner. In the ... [more ▼]

Villin is an actin-binding protein that is associated with the cytoskeleton of brush border microvilli. In vitro, villin nucleates, caps or severs actin filaments in a Ca(2+)-dependent manner. In the absence of Ca2+, villin organizes microfilaments into bundles. Transfection of a villin-specific cDNA into cultured cells that do not produce this protein results in the growth of long surface microvilli and the reorganization of the underlying actin cytoskeleton. Here we studied the effects of low concentrations of cytochalasin D on the induction of these plasma membrane-actin cytoskeleton specializations. Transfected cells were treated with concentrations of cytochalasin D that prevent the association of actin monomers with the fast-growing end of microfilaments in vitro. In villin-positive cells, cytochalasin D inhibited the growth of microvilli and promoted the formation of rodlet-like actin structures, which were randomly distributed throughout the cytoplasm. The formation of these structures was dependent on large amounts of villin and on the integrity of an actin-binding site located at the carboxy terminus of villin, which is required for microfilament bundling in vitro and for the growth of microvilli in vivo. The effect of cytochalasin D was reversible. The observation of living cells by video-imaging revealed that when cytochalasin D was removed, rapid disassembly of actin rodlets occurred after a lag phase. The present data stress the important role of the plasma membrane in the organization of the actin cytoskeleton and suggest that the extension of the microvillar plasma membrane is dependent on the elongation of microfilaments at their fast-growing end. Inhibition of microfilament elongation near the plasma membrane by cytochalasin D may result in the 'random' nucleation of actin filaments throughout the cytoplasm. On the basis of the present data, we propose that villin is involved in the assembly of the microvillar actin bundle by a mechanism that does not prevent monomer association with the preferred end of microfilaments. For instance, villin may stabilize actin filaments by lateral interactions. The functional importance of the carboxy-terminal F-actin binding site in such a mechanism is stressed by the fact that it is required for the formation of F-actin rodlets in cytochalasin D-treated cells. Finally, our data further emphasize the observations that the effects of cytochalasin D in living cells can be modulated by actin-binding proteins. [less ▲]

Detailed reference viewed: 30 (0 UL)
Peer Reviewed
See detailIn vivo analysis of functional domains from villin and gelsolin.
Finidori, J.; Friederich, Evelyne UL; Kwiatkowski, D. J. et al

in The Journal of cell biology (1992), 116(5), 1145-55

Transfected CV1 cells were used to compare the in vivo effects of various domains of villin and gelsolin. These two homologous actin modulating proteins both contain a duplicated severin-like sequence ... [more ▼]

Transfected CV1 cells were used to compare the in vivo effects of various domains of villin and gelsolin. These two homologous actin modulating proteins both contain a duplicated severin-like sequence. Villin has in addition a carboxy-terminal domain, the headpiece, which accounts for its bundling activity. The effects of the villin-deleted mutants were compared with those of native villin. Our results show that essential domains of villin required to induce the growth of microvilli and F-actin redistribution are present in the first half of the core and in the headpiece. We also show that the second half of the villin core cannot be exchanged by its homolog in gelsolin. When expressed at high levels of CV1 cells, full length gelsolin completely disrupted stress fibers without change of the cell shape. Addition of the villin headpiece to gelsolin had no effect on the phenotype induced by gelsolin alone. Expression of the first half of gelsolin induced similar modifications as capping proteins and rapid cell mortality; this deleterious effect on the cell structure was also observed when the headpiece was linked to the first half of gelsolin. In cells expressing the second half of gelsolin, a dotted F-actin staining was often seen. Moreover elongated dorsal F-actin structures were observed when the headpiece was linked to the second gelsolin domain. These studies illustrate the patent in vivo severing activity of gelsolin as well as the distinct functional properties of villin core in contrast to gelsolin. [less ▲]

Detailed reference viewed: 45 (0 UL)
Peer Reviewed
See detailAn actin-binding site containing a conserved motif of charged amino acid residues is essential for the morphogenic effect of villin.
Friederich, Evelyne UL; Vancompernolle, K.; Huet, C. et al

in Cell (1992), 70(1), 81-92

The actin-binding protein villin induces microvillus growth and reorganization of the cytoskeleton in cells that do not normally produce this protein. Transfection of mutagenized villin cDNAs into CV-1 ... [more ▼]

The actin-binding protein villin induces microvillus growth and reorganization of the cytoskeleton in cells that do not normally produce this protein. Transfection of mutagenized villin cDNAs into CV-1 cells was used to show that a conserved, COOH-terminally located cluster of charged amino acid residues (KKEK) is crucial for the morphogenic activity of villin in vivo. In vitro experiments with a 22 amino acid synthetic peptide corresponding to this region of villin provide evidence that this motif is part of an F-actin-binding site that induces G-actin to polymerize. Chemical cross-linking of actin to this peptide, the effects of amino acid substitutions in peptides, and the behavior of villin variants further corroborate the participation of the KKEK sequence in actin contacts. [less ▲]

Detailed reference viewed: 53 (0 UL)
Peer Reviewed
See detailFrom the structure to the function of villin, an actin-binding protein of the brush border.
Friederich, Evelyne UL; Pringault, E.; Arpin, M. et al

in BioEssays : news and reviews in molecular, cellular and developmental biology (1990), 12(9), 403-8

Villin, a calcium-regulated actin-binding protein, modulates the structure and assembly of actin filaments in vitro. It is organized into three domains, the first two of which are homologous. Villin is ... [more ▼]

Villin, a calcium-regulated actin-binding protein, modulates the structure and assembly of actin filaments in vitro. It is organized into three domains, the first two of which are homologous. Villin is mainly produced in epithelial cells that develop a brush border and which are responsible for nutrient uptake. Expression of the villin structural gene is precisely regulated during mouse embryogenesis and is restricted in adults, to certain epithelia of the gastrointestinal and urogenital tracts. The function of villin has been assessed by transfecting CV1 cells with a human cDNA encoding wild-type villin or mutant villin. Synthesis of large amounts of villin in cells which do not normally produce this protein induces the growth of microvilli on the cell surface and the redistribution of F-actin, concomitant with the disappearance of stress fibers. The complete villin sequence is required for the morphogenic effect. These results suggest that villin plays a key role in the morphogenesis of microvilli. [less ▲]

Detailed reference viewed: 58 (0 UL)
Peer Reviewed
See detailVillin induces microvilli growth and actin redistribution in transfected fibroblasts.
Friederich, Evelyne UL; Huet, C.; Arpin, M. et al

in Cell (1989), 59(3), 461-75

The function of villin, an actin-binding protein, has been investigated by transfecting fibroblasts with cloned human cDNAs encoding wild-type villin or functional villin domains. Synthesis of large ... [more ▼]

The function of villin, an actin-binding protein, has been investigated by transfecting fibroblasts with cloned human cDNAs encoding wild-type villin or functional villin domains. Synthesis of large amounts of villin induced the growth of numerous long microvilli on cell surfaces together with the redistribution of F-actin. These microvilli contained a cytoskeleton of F-actin, and their appearance was frequently accompanied by the disappearance of stress fibers. The complete villin gene sequence was required to exert its morphogenic effect. Villin lacking one actin-binding domain (113 amino acids), located at its carboxyterminal end, did not induce growth if microvilli or stress fiber disruption. Our results indicate that villin plays a key role in vivo in the morphogenesis of microvilli. [less ▲]

Detailed reference viewed: 84 (0 UL)