References of "Loew, Pascal Juergen 0151068053"
     in
Bookmark and Share    
See detailPhase field fracture model for viscoplastic materials in large deformations
Kabore, Brice Wendlassida UL; Loew, Pascal Juergen UL; Peters, Bernhard UL

Scientific Conference (2019, June 13)

Phase-field modeling approach to material fracture and damage has received a growing interest among researchers. It has proven to be an effective way to address crack related discontinuities in continuum ... [more ▼]

Phase-field modeling approach to material fracture and damage has received a growing interest among researchers. It has proven to be an effective way to address crack related discontinuities in continuum mechanics. Also, it solves the problem related to tracking the fracture surface by simply representing the fracture phase with a continuous field variable. Recently, phase-field fracture models have been extended to finite deformations, crack nucleation and applied to complex material behaviors such as plasticity and viscoplasticity. In this contribution we describe a viscoplastic model coupled with a phase-field dynamic fracture model in a large strain formulation. The model include damage, history, rate and temperature dependent behavior. A finite element implementation is presented in a staggered time integration. Moreover, we address the crack closure and crack surfaces interpenetration taking into account tension-compression strength asymmetry. Performance of the model on dynamic crack propagation are presented. [less ▲]

Detailed reference viewed: 49 (5 UL)
Full Text
Peer Reviewed
See detailRate-dependent phase-field damage modeling of rubber and its experimental parameter identification
Loew, Pascal Juergen UL; Peters, Bernhard UL; Beex, Lars UL

in Journal of the Mechanics and Physics of Solids (2019)

Phase-field models have the advantage in that no geometric descriptions of cracks are required, which means that crack coalescence and branching can be treated without additional effort. Miehe and ... [more ▼]

Phase-field models have the advantage in that no geometric descriptions of cracks are required, which means that crack coalescence and branching can be treated without additional effort. Miehe and Schänzel (2014) introduced a rate-independent phase-field damage model for finite strains in which a viscous damage regularization was proposed. We extend the model to depend on the loading rate and time by incorporating rubber’s strain-rate dependency in the constitutive description of the bulk, as well as in the damage driving force. The parameters of the model are identified using experiments at different strain rates. Local strain fields near the crack tip, obtained with digital image correlation (DIC), are used to help identify the length scale parameter. Three different degradation functions are assessed for their accuracy to model the rubber’s rate-dependent fracture. An adaptive time-stepping approach with a corrector scheme is furthermore employed to increase the computational efficiency with a factor of six, whereas an active set method guarantees the irreversibility of damage. Results detailing the energy storage and dissipation of the different model constituents are included, as well as validation results that show promising capabilities of rate-dependent phase-field modeling. [less ▲]

Detailed reference viewed: 73 (14 UL)