References of "Liu, Kui 50023103"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailiFixR: bug report driven program repair
Koyuncu, Anil UL; Liu, Kui UL; Bissyande, Tegawendé François D Assise UL et al

in ESEC/FSE 2019 Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering (2019, August)

Issue tracking systems are commonly used in modern software development for collecting feedback from users and developers. An ultimate automation target of software maintenance is then the systematization ... [more ▼]

Issue tracking systems are commonly used in modern software development for collecting feedback from users and developers. An ultimate automation target of software maintenance is then the systematization of patch generation for user-reported bugs. Although this ambition is aligned with the momentum of automated program repair, the literature has, so far, mostly focused on generate-and- validate setups where fault localization and patch generation are driven by a well-defined test suite. On the one hand, however, the common (yet strong) assumption on the existence of relevant test cases does not hold in practice for most development settings: many bugs are reported without the available test suite being able to reveal them. On the other hand, for many projects, the number of bug reports generally outstrips the resources available to triage them. Towards increasing the adoption of patch generation tools by practitioners, we investigate a new repair pipeline, iFixR, driven by bug reports: (1) bug reports are fed to an IR-based fault localizer; (2) patches are generated from fix patterns and validated via regression testing; (3) a prioritized list of generated patches is proposed to developers. We evaluate iFixR on the Defects4J dataset, which we enriched (i.e., faults are linked to bug reports) and carefully-reorganized (i.e., the timeline of test-cases is naturally split). iFixR generates genuine/plausible patches for 21/44 Defects4J faults with its IR-based fault localizer. iFixR accurately places a genuine/plausible patch among its top-5 recommendation for 8/13 of these faults (without using future test cases in generation-and-validation). [less ▲]

Detailed reference viewed: 37 (3 UL)
Full Text
Peer Reviewed
See detailTBar: Revisiting Template-based Automated Program Repair
Liu, Kui UL; Koyuncu, Anil UL; Kim, Dongsun et al

in 28th ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA) (2019, July)

We revisit the performance of template-based APR to build com-prehensive knowledge about the effectiveness of fix patterns, andto highlight the importance of complementary steps such as faultlocalization ... [more ▼]

We revisit the performance of template-based APR to build com-prehensive knowledge about the effectiveness of fix patterns, andto highlight the importance of complementary steps such as faultlocalization or donor code retrieval. To that end, we first investi-gate the literature to collect, summarize and label recurrently-usedfix patterns. Based on the investigation, we buildTBar, a straight-forward APR tool that systematically attempts to apply these fixpatterns to program bugs. We thoroughly evaluateTBaron the De-fects4J benchmark. In particular, we assess the actual qualitative andquantitative diversity of fix patterns, as well as their effectivenessin yielding plausible or correct patches. Eventually, we find that,assuming a perfect fault localization,TBarcorrectly/plausibly fixes74/101 bugs. Replicating a standard and practical pipeline of APRassessment, we demonstrate thatTBarcorrectly fixes 43 bugs fromDefects4J, an unprecedented performance in the literature (includ-ing all approaches, i.e., template-based, stochastic mutation-basedor synthesis-based APR). [less ▲]

Detailed reference viewed: 59 (3 UL)
Full Text
Peer Reviewed
See detailLearning to Spot and Refactor Inconsistent Method Names
Liu, Kui UL; Kim, Dongsun; Bissyande, Tegawendé François D Assise UL et al

in 41st ACM/IEEE International Conference on Software Engineering (ICSE) (2019, May)

To ensure code readability and facilitate software maintenance, program methods must be named properly. In particular, method names must be consistent with the corresponding method implementations ... [more ▼]

To ensure code readability and facilitate software maintenance, program methods must be named properly. In particular, method names must be consistent with the corresponding method implementations. Debugging method names remains an important topic in the literature, where various approaches analyze commonalities among method names in a large dataset to detect inconsistent method names and suggest better ones. We note that the state-of-the-art does not analyze the implemented code itself to assess consistency. We thus propose a novel automated approach to debugging method names based on the analysis of consistency between method names and method code. The approach leverages deep feature representation techniques adapted to the nature of each artifact. Experimental results on over 2.1 million Java methods show that we can achieve up to 15 percentage points improvement over the state-of-the-art, establishing a record performance of 67.9% F1-measure in identifying inconsistent method names. We further demonstrate that our approach yields up to 25% accuracy in suggesting full names, while the state-of-the-art lags far behind at 1.1% accuracy. Finally, we report on our success in fixing 66 inconsistent method names in a live study on projects in the wild. [less ▲]

Detailed reference viewed: 228 (16 UL)
Full Text
Peer Reviewed
See detailYou Cannot Fix What You Cannot Find! An Investigation of Fault Localization Bias in Benchmarking Automated Program Repair Systems
Liu, Kui UL; Koyuncu, Anil UL; Bissyande, Tegawendé François D Assise UL et al

in The 12th IEEE International Conference on Software Testing, Verification and Validation (ICST-2019) (2019, April 24)

Properly benchmarking Automated Program Repair (APR) systems should contribute to the development and adoption of the research outputs by practitioners. To that end, the research community must ensure ... [more ▼]

Properly benchmarking Automated Program Repair (APR) systems should contribute to the development and adoption of the research outputs by practitioners. To that end, the research community must ensure that it reaches significant milestones by reliably comparing state-of-the-art tools for a better understanding of their strengths and weaknesses. In this work, we identify and investigate a practical bias caused by the fault localization (FL) step in a repair pipeline. We propose to highlight the different fault localization configurations used in the literature, and their impact on APR systems when applied to the Defects4J benchmark. Then, we explore the performance variations that can be achieved by "tweaking'' the FL step. Eventually, we expect to create a new momentum for (1) full disclosure of APR experimental procedures with respect to FL, (2) realistic expectations of repairing bugs in Defects4J, as well as (3) reliable performance comparison among the state-of-the-art APR systems, and against the baseline performance results of our thoroughly assessed kPAR repair tool. Our main findings include: (a) only a subset of Defects4J bugs can be currently localized by commonly-used FL techniques; (b) current practice of comparing state-of-the-art APR systems (i.e., counting the number of fixed bugs) is potentially misleading due to the bias of FL configurations; and (c) APR authors do not properly qualify their performance achievement with respect to the different tuning parameters implemented in APR systems. [less ▲]

Detailed reference viewed: 137 (14 UL)
Full Text
Peer Reviewed
See detailAVATAR: Fixing Semantic Bugs with Fix Patterns of Static Analysis Violations
Liu, Kui UL; Koyuncu, Anil UL; Dongsun, Kim et al

in The 26th IEEE International Conference on Software Analysis, Evolution, and Reengineering (SANER-2019) (2019, February 24)

Fix pattern-based patch generation is a promising direction in Automated Program Repair (APR). Notably, it has been demonstrated to produce more acceptable and correct patches than the patches obtained ... [more ▼]

Fix pattern-based patch generation is a promising direction in Automated Program Repair (APR). Notably, it has been demonstrated to produce more acceptable and correct patches than the patches obtained with mutation operators through genetic programming. The performance of pattern-based APR systems, however, depends on the fix ingredients mined from fix changes in development histories. Unfortunately, collecting a reliable set of bug fixes in repositories can be challenging. In this paper, we propose to investigate the possibility in an APR scenario of leveraging code changes that address violations by static bug detection tools. To that end, we build the AVATAR APR system, which exploits fix patterns of static analysis violations as ingredients for patch generation. Evaluated on the Defects4J benchmark, we show that, assuming a perfect localization of faults, AVATAR can generate correct patches to fix 34/39 bugs. We further find that AVATAR yields performance metrics that are comparable to that of the closely-related approaches in the literature. While AVATAR outperforms many of the state-of-the-art pattern-based APR systems, it is mostly complementary to current approaches. Overall, our study highlights the relevance of static bug finding tools as indirect contributors of fix ingredients for addressing code defects identified with functional test cases. [less ▲]

Detailed reference viewed: 127 (12 UL)
Full Text
Peer Reviewed
See detailLSRepair: Live Search of Fix Ingredients for Automated Program Repair
Liu, Kui UL; Koyuncu, Anil UL; Kim, Kisub UL et al

in 25th Asia-Pacific Software Engineering Conference (APSEC) (2018, December 07)

Automated program repair (APR) has extensively been developed by leveraging search-based techniques, in which fix ingredients are explored and identified in different granularities from a specific search ... [more ▼]

Automated program repair (APR) has extensively been developed by leveraging search-based techniques, in which fix ingredients are explored and identified in different granularities from a specific search space. State-of-the approaches often find fix ingredients by using mutation operators or leveraging manually-crafted templates. We argue that the fix ingredients can be searched in an online mode, leveraging code search techniques to find potentially-fixed versions of buggy code fragments from which repair actions can be extracted. In this study, we present an APR tool, LSRepair, that automatically explores code repositories to search for fix ingredients at the method-level granularity with three strategies of similar code search. Our preliminary evaluation shows that code search can drive a faster fix process (some bugs are fixed in a few seconds). LSRepair helps repair 19 bugs from the Defects4J benchmark successfully. We expect our approach to open new directions for fixing multiple-lines bugs. [less ▲]

Detailed reference viewed: 209 (20 UL)
Full Text
Peer Reviewed
See detailAutomated Testing of Android Apps: A Systematic Literature Review
Kong, Pingfan UL; Li, Li; Gao, Jun UL et al

in IEEE Transactions on Reliability (2018)

Automated testing of Android apps is essential for app users, app developers and market maintainer communities alike. Given the widespread adoption of Android and the specificities of its development ... [more ▼]

Automated testing of Android apps is essential for app users, app developers and market maintainer communities alike. Given the widespread adoption of Android and the specificities of its development model, the literature has proposed various testing approaches for ensuring that not only functional requirements but also non-functional requirements are satisfied. In this paper, we aim at providing a clear overview of the state-of-the-art works around the topic of Android app testing, in an attempt to highlight the main trends, pinpoint the main methodologies applied and enumerate the challenges faced by the Android testing approaches as well as the directions where the community effort is still needed. To this end, we conduct a Systematic Literature Review (SLR) during which we eventually identified 103 relevant research papers published in leading conferences and journals until 2016. Our thorough examination of the relevant literature has led to several findings and highlighted the challenges that Android testing researchers should strive to address in the future. After that, we further propose a few concrete research directions where testing approaches are needed to solve recurrent issues in app updates, continuous increases of app sizes, as well as the Android ecosystem fragmentation. [less ▲]

Detailed reference viewed: 122 (22 UL)
Full Text
Peer Reviewed
See detailA Closer Look at Real-World Patches
Liu, Kui UL; Kim, Dongsun UL; Koyuncu, Anil UL et al

in 34th IEEE International Conference on Software Maintenance and Evolution (ICSME) (2018, September)

Bug fixing is a time-consuming and tedious task. To reduce the manual efforts in bug fixing, researchers have presented automated approaches to software repair. Unfortunately, recent studies have shown ... [more ▼]

Bug fixing is a time-consuming and tedious task. To reduce the manual efforts in bug fixing, researchers have presented automated approaches to software repair. Unfortunately, recent studies have shown that the state-of-the-art techniques in automated repair tend to generate patches only for a small number of bugs even with quality issues (e.g., incorrect behavior and nonsensical changes). To improve automated program repair (APR) techniques, the community should deepen its knowledge on repair actions from real-world patches since most of the techniques rely on patches written by human developers. Previous investigations on real-world patches are limited to statement level that is not sufficiently fine-grained to build this knowledge. In this work, we contribute to building this knowledge via a systematic and fine-grained study of 16,450 bug fix commits from seven Java open-source projects. We find that there are opportunities for APR techniques to improve their effectiveness by looking at code elements that have not yet been investigated. We also discuss nine insights into tuning automated repair tools. For example, a small number of statement and expression types are recurrently impacted by real-world patches, and expression-level granularity could reduce search space of finding fix ingredients, where previous studies never explored. [less ▲]

Detailed reference viewed: 114 (23 UL)
Full Text
Peer Reviewed
See detailMining Fix Patterns for FindBugs Violations
Liu, Kui UL; Kim, Dongsun; Bissyande, Tegawendé François D Assise UL et al

in IEEE Transactions on Software Engineering (2018)

Several static analysis tools, such as Splint or FindBugs, have been proposed to the software development community to help detect security vulnerabilities or bad programming practices. However, the ... [more ▼]

Several static analysis tools, such as Splint or FindBugs, have been proposed to the software development community to help detect security vulnerabilities or bad programming practices. However, the adoption of these tools is hindered by their high false positive rates. If the false positive rate is too high, developers may get acclimated to violation reports from these tools, causing concrete and severe bugs being overlooked. Fortunately, some violations are actually addressed and resolved by developers. We claim that those violations that are recurrently fixed are likely to be true positives, and an automated approach can learn to repair similar unseen violations. However, there is lack of a systematic way to investigate the distributions on existing violations and fixed ones in the wild, that can provide insights into prioritizing violations for developers, and an effective way to mine code and fix patterns which can help developers easily understand the reasons of leading violations and how to fix them. In this paper, we first collect and track a large number of fixed and unfixed violations across revisions of software. The empirical analyses reveal that there are discrepancies in the distributions of violations that are detected and those that are fixed, in terms of occurrences, spread and categories, which can provide insights into prioritizing violations. To automatically identify patterns in violations and their fixes, we propose an approach that utilizes convolutional neural networks to learn features and clustering to regroup similar instances. We then evaluate the usefulness of the identified fix patterns by applying them to unfixed violations. The results show that developers will accept and merge a majority (69/116) of fixes generated from the inferred fix patterns. It is also noteworthy that the yielded patterns are applicable to four real bugs in the Defects4J major benchmark for software testing and automated repair. [less ▲]

Detailed reference viewed: 71 (2 UL)