References of "Langlois, Melanie 50003381"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailPharmacological characterization of an antisense knockdown zebrafish model of Dravet syndrome: Inhibition of epileptic seizures by the serotonin agonist fenfluramine
Zhang, Yang UL; Kecskés, A.; Copmans, D. et al

in PLoS ONE (2015), 10(5),

Dravet syndrome (DS) is one of the most pharmacoresistant and devastating forms of childhood epilepsy syndromes. Distinct de novo mutations in the SCN1A gene are responsible for over 80% of DS cases ... [more ▼]

Dravet syndrome (DS) is one of the most pharmacoresistant and devastating forms of childhood epilepsy syndromes. Distinct de novo mutations in the SCN1A gene are responsible for over 80% of DS cases. While DS is largely resistant to treatment with existing anti-epileptic drugs, promising results have been obtained in clinical trials with human patients treated with the serotonin agonist fenfluramine as an add-on therapeutic. We developed a zebrafish model of DS using morpholino antisense oligomers (MOs) targeting scn1Lab, the zebrafish ortholog of SCN1A. Zebrafish larvae with an antisense knockdown of scn1Lab (scn1Lab morphants) were characterized by automated behavioral tracking and high-resolution video imaging, in addition to measuring brain activity through local field potential recordings. Our findings reveal that scn1Lab morphants display hyperactivity, convulsive seizure-like behavior, loss of posture, repetitive jerking and a myoclonic seizure-like pattern. The occurrence of spontaneous seizures was confirmed by local field potential recordings of the forebrain, measuring epileptiform discharges. Furthermore, we show that these larvae are remarkably sensitive to hyperthermia, similar to what has been described for mouse models of DS, as well as for human DS patients. Pharmacological evaluation revealed that sodium valproate and fenfluramine significantly reduce epileptiform discharges in scn1Lab morphants. Our findings for this zebrafish model of DS are in accordance with clinical data for human DS patients. To our knowledge, this is the first study demonstrating effective seizure inhibition of fenfluramine in an animal model of Dravet syndrome. Moreover, these results provide a basis for identifying novel analogs with improved activity and significantly milder or no side effects. © 2015 Zhang et al. [less ▲]

Detailed reference viewed: 78 (1 UL)
Full Text
Peer Reviewed
See detailMutations in STX1B, encoding a presynaptic protein, cause fever-associated epilepsy syndromes
Schubert, Julian; Siekierska, Aleksandra; Langlois, Melanie UL et al

in Nature Genetics (2014), 46(12), 1327-32

Febrile seizures affect 2–4% of all children1 and have a strong genetic component2. Recurrent mutations in three main genes (SCN1A, SCN1B and GABRG2)3, 4, 5 have been identified that cause febrile ... [more ▼]

Febrile seizures affect 2–4% of all children1 and have a strong genetic component2. Recurrent mutations in three main genes (SCN1A, SCN1B and GABRG2)3, 4, 5 have been identified that cause febrile seizures with or without epilepsy. Here we report the identification of mutations in STX1B, encoding syntaxin-1B6, that are associated with both febrile seizures and epilepsy. Whole-exome sequencing in independent large pedigrees7, 8 identified cosegregating STX1B mutations predicted to cause an early truncation or an in-frame insertion or deletion. Three additional nonsense or missense mutations and a de novo microdeletion encompassing STX1B were then identified in 449 familial or sporadic cases. Video and local field potential analyses of zebrafish larvae with antisense knockdown of stx1b showed seizure-like behavior and epileptiform discharges that were highly sensitive to increased temperature. Wild-type human syntaxin-1B but not a mutated protein rescued the effects of stx1b knockdown in zebrafish. Our results thus implicate STX1B and the presynaptic release machinery in fever-associated epilepsy syndromes. [less ▲]

Detailed reference viewed: 294 (103 UL)