References of "Lagerwall, Jan 50002154"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailLiquid crystals in micron-scale droplets, shells and fibers
Urbanski, Martin UL; Reyes, Catherine UL; Noh, Junghyun UL et al

in Journal of Physics : Condensed Matter (2017), 29

The extraordinary responsiveness and large diversity of self-assembled structures of liquid crystals are well documented and they have been extensively used in devices like displays. For long, this ... [more ▼]

The extraordinary responsiveness and large diversity of self-assembled structures of liquid crystals are well documented and they have been extensively used in devices like displays. For long, this application route strongly influenced academic research, which frequently focused on the performance of liquid crystals in display-like geometries, typically between flat, rigid substrates of glass or similar solids. Today a new trend is clearly visible, where liquid crystals confined within curved, often soft and flexible, interfaces are in focus. Innovation in microfluidic technology has opened for high-throughput production of liquid crystal droplets or shells with exquisite monodispersity, and modern characterization methods allow detailed analysis of complex director arrangements. The introduction of electrospinning in liquid crystal research has enabled encapsulation in optically transparent polymeric cylinders with very small radius, allowing studies of confinement effects that were not easily accessible before. It also opened the prospect of functionalizing textile fibers with liquid crystals in the core, triggering activities that target wearable devices with true textile form factor for seamless integration in clothing. Together, these developments have brought issues center stage that might previously have been considered esoteric, like the interaction of topological defects on spherical surfaces, saddle-splay curvature-induced spontaneous chiral symmetry breaking, or the non-trivial shape changes of curved liquid crystal elastomers with non-uniform director fields that undergo a phase transition to an isotropic state. The new research thrusts are motivated equally by the intriguing soft matter physics showcased by liquid crystals in these unconventional geometries, and by the many novel application opportunities that arise when we can reproducibly manufacture these systems on a commercial scale. This review attempts to summarize the current understanding of liquid crystals in spherical and cylindrical geometry, the state of the art of producing such samples, as well as the perspectives for innovative applications that have been put forward. [less ▲]

Detailed reference viewed: 91 (1 UL)
Full Text
Peer Reviewed
See detailTaming Liquid Crystal Self-Assembly: The Multifaceted Response of Nematic and Smectic Shells to Polymerization.
Noh, Junghyun UL; henx, Benjamin; Lagerwall, Jan UL

in Advanced Materials (2016)

By photopolymerizing liquid crystal shells, their rich variety of self-assembled structures can be rendered permanent and the lifetime extended from days to months, without removing the characteristic ... [more ▼]

By photopolymerizing liquid crystal shells, their rich variety of self-assembled structures can be rendered permanent and the lifetime extended from days to months, without removing the characteristic responsiveness. If polymerization is carried out close to either boundary of the nematic phase, the process triggers the transition into the adjacent phase, to higher or to lower degree of order. [less ▲]

Detailed reference viewed: 49 (6 UL)
Full Text
Peer Reviewed
See detailCorrelation between structural properties and iridescent colors of cellulose nanocrystalline films
Licen, M. V.; Majaron, B.; Noh, Junghyun UL et al

in Cellulose (2016)

We investigate the effect of shear flow applied during the drying of aqueous suspension of cellulose nanocrystals on optical reflective properties and structural characteristics of the resulting ... [more ▼]

We investigate the effect of shear flow applied during the drying of aqueous suspension of cellulose nanocrystals on optical reflective properties and structural characteristics of the resulting solidified films. Shear flow can significantly improve internal structural homogeneity of the films, while its effect on optical reflective properties is relatively minor. The measured width of the selective reflection peak is an order of magnitude larger than expected for an ideal helically modulated structure, which reflects a distribution of pitch values and possibly also of regimes of distorted helical modulation. We attribute these imperfections to the broad size distribution of the cellulose nanocrystals. [less ▲]

Detailed reference viewed: 44 (0 UL)
Full Text
Peer Reviewed
See detailEnhancing Self-Assembly in Cellulose Nanocrystal Suspensions Using High-Permittivity Solvents
Bruckner, Johanna; Kuhnhold, Anja UL; Honorato Rios, Camila UL et al

in Langmuir (2016)

Helical liquid crystal self-assembly in suspensions of cellulose nanocrystals (CNCs), bioderived nanorods exhibiting excellent mechanical and optical properties, opens attractive routes to sustainable ... [more ▼]

Helical liquid crystal self-assembly in suspensions of cellulose nanocrystals (CNCs), bioderived nanorods exhibiting excellent mechanical and optical properties, opens attractive routes to sustainable production of advanced functional materials. For convenience, in most studies until now, the CNCs were suspended in water, leaving a knowledge gap concerning the influence of the solvent. Using a novel approach for aggregation-free solvent exchange in CNC suspensions, here we show that protic solvents with a high dielectric permittivity εr significantly speed up self-assembly (from days to hours) at high CNC mass fraction and reduce the concentration dependence of the helix period (variation reducing from more than 30 μm to less than 1 μm). Moreover, our computer simulations indicate that the degree of order at constant CNC content increases with increasing εr, leading to a shorter pitch and a reduced threshold for liquid crystallinity. In low-εr solvents, the onset of long-range orientational order is coupled to kinetic arrest, preventing the formation of a helical superstructure. Our results show that the choice of solvent is a powerful parameter for tuning the behavior of CNC suspensions, enhancing our ability to control the self-assembly and thereby harvesting valuable novel cellulose-based materials. [less ▲]

Detailed reference viewed: 75 (11 UL)
Full Text
Peer Reviewed
See detailNon-electronic gas sensors from electrospun mats of liquid crystal core fibers for detecting volatile organic compounds at room temperature
Reyes, Catherine UL; Sharma, Anshul UL; Lagerwall, Jan UL

in Liquid Crystals (2016)

Non-woven mats comprised of liquid crystal-functionalised fibres are coaxially electrospun to create soft gas sensors that function non-electronically, thus requiring no power supply, detect- ing organic ... [more ▼]

Non-woven mats comprised of liquid crystal-functionalised fibres are coaxially electrospun to create soft gas sensors that function non-electronically, thus requiring no power supply, detect- ing organic vapours at room temperature. The fibres consist of a poly(vinylpyrrolidone) (PVP) sheath surrounding a core of nematic 4-cyano-4ʹpentylbiphenyl (5CB) liquid crystal. Several types of mats, containing uniformly cylindrical or irregular beaded fibres, in uniform or random orientations, are exposed to toluene vapour as a representative volatile organic compound. Between crossed polarisers all mats respond with a fast (response time on the order of a second or faster) reduction in brightness during gas exposure, and they return to the original state upon removal of the gas almost as quickly. With beaded fibres, the response of the mats is visible even without polarisers. We discuss how variations in fibre spinning conditions such as humidity level and the ratio of core-sheath fluid flow rates can be used to tune fibre morphology and thereby the response. Considering future development perspectives, we argue that fibres turned respon- sive through the incorporation of a liquid crystal core show promise as a new generation of sensors with textile form factor, ideal for wearable technology applications. [less ▲]

Detailed reference viewed: 58 (3 UL)
Full Text
Peer Reviewed
See detailEquilibrium Liquid Crystal Phase Diagrams and Detection of Kinetic Arrest in Cellulose Nanocrystal Suspensions
Honorato Rios, Camila UL; Kuhnhold, Anja UL; Bruckner, Johanna et al

in Frontiers in Materials (2016), 3

The cholesteric liquid crystal self-assembly of water-suspended cellulose nanocrystal (CNC) into a helical arrangement was observed already more than 20 years ago, and the phenomenon was used to produce ... [more ▼]

The cholesteric liquid crystal self-assembly of water-suspended cellulose nanocrystal (CNC) into a helical arrangement was observed already more than 20 years ago, and the phenomenon was used to produce iridescent solid films by evaporating the solvent or via sol–gel processing. Yet, it remains challenging to produce optically uniform films and to control the pitch reproducibly, reflecting the complexity of the three-stage drying process that is followed in preparing the films. An equilibrium liquid crystal phase formation stage is followed by a non-equilibrium kinetic arrest, which in turn is followed by structural collapse as the remaining solvent is evaporated. Here, we focus on the first of these stages, combining a set of systematic rheology and polarizing optics experiments with computer simulations to establish a detailed phase diagram of aqueous CNC suspensions with two different values of the surface charge, up to the concentration where kinetic arrest sets in. We also study the effect of varying ionic strength of the solvent. Within the cholesteric phase regime, we measure the equilibrium helical pitch as a function of the same parameters. We report a hitherto unnoticed change in character of the isotropic–cholesteric transition at increasing ionic strength, with a continuous weakening of the first-order character up to the point where phase coexistence is difficult to detect macroscopically due to substantial critical fluctuations. [less ▲]

Detailed reference viewed: 61 (9 UL)
Full Text
Peer Reviewed
See detailNanoparticles dispersed in liquid crystals: impact on conductivity, low-frequency relaxation and electro-optical performance
Urbanski, Martin UL; Lagerwall, Jan UL

in Journal of Materials Chemistry C (2016), 4(16), 3485-3491

We study the impact of functionalized gold nanoparticles on the impedance response of nematic nanoparticle/liquid crystal dispersions in the frequency range of 0.1 Hz–100 kHz. By fitting a suitable ... [more ▼]

We study the impact of functionalized gold nanoparticles on the impedance response of nematic nanoparticle/liquid crystal dispersions in the frequency range of 0.1 Hz–100 kHz. By fitting a suitable equivalent electric circuit model to the experimental data we show that nanoparticle doping does not affect the permittivity of the nematic host, but significantly increases its conductivity. This causes a Debye-type relaxation process in the Hz and low kHz regime, which originates from mobile charge carriers accumulating near the electrodes of the test cell. The effect of this electrode polarization on the electro-optical response of the nanocomposites is discussed with respect to threshold voltage and dielectric permittivity. We demonstrate that nanoparticle doping does not alter the electro-optic response at frequencies above the occurrence of electrode polarization, while it strongly deteriorates the performance in the low frequency regime. [less ▲]

Detailed reference viewed: 71 (2 UL)
Full Text
Peer Reviewed
See detailHigh-fidelity spherical cholesteric liquid crystal Bragg reflectors generating unclonable patterns for secure authentication
Geng, Yong UL; Noh, Junghyun UL; Drevensek-Olenik, Irena et al

in Scientific Reports (2016), 6(26840), 1-8

Monodisperse cholesteric liquid crystal microspheres exhibit spherically symmetric Bragg reflection, generating, via photonic cross communication, dynamically tuneable multi-coloured patterns. These ... [more ▼]

Monodisperse cholesteric liquid crystal microspheres exhibit spherically symmetric Bragg reflection, generating, via photonic cross communication, dynamically tuneable multi-coloured patterns. These patterns, uniquely defined by the particular sphere arrangement, could render cholesteric microspheres very useful in countless security applications, as tags to identify and authenticate their carriers, mainly physical objects or persons. However, the optical quality of the cholesteric droplets studied so far is unsatisfactory, especially after polymerisation, a step required for obtaining durable samples that can be used for object identification. We show that a transition from droplets to shells solves all key problems, giving rise to sharp patterns and excellent optical quality even after polymerisation, the polymerised shells sustaining considerable mechanical deformation. Moreover, we demonstrate that, counter to prior expectation, cross communication takes place even between non-identical shells. This opens additional communication channels that add significantly to the complexity and unique character of the generated patterns. [less ▲]

Detailed reference viewed: 234 (34 UL)
Full Text
See detailTransmission polarized optical microscopy of short-pitch cholesteric liquid crystal shells
Geng, Yong UL; Noh, Junghyun UL; Lagerwall, Jan UL

in Proceedings of SPIE - The International Society for Optical Engineering (2016, March 07), 9769

We recently demonstrated that colloidal crystal arrangements of monodisperse droplets or shells of planar-aligned cholesteric liquid crystal exhibit intricate patterns of circularly polarized reflection ... [more ▼]

We recently demonstrated that colloidal crystal arrangements of monodisperse droplets or shells of planar-aligned cholesteric liquid crystal exhibit intricate patterns of circularly polarized reflection spots of different colors. The spots appear as a result of photonic cross communication between droplets, hence the patterns reflect the macroscopic arrangement of droplets or shells. Apart from being an interesting optical phenomenon, it offers attractive application opportunities in photonics and beyond, due to the unique characteristics of the patterns. It turns out that the optical quality of shells is much enhanced compared to that of droplets, hence we focus our attention primarily on shells, of varying thickness. Here we analyze and explain the intriguing textures arising when studying planar-aligned short-pitch cholesteric shells in transmission polarizing optical microscopy. In this case, the texture reflects the properties of each individual shell, without any sign of cross communication, yet also this pattern holds some fascinating mysteries. These can only be elucidated by considering all the peculiar optical properties of cholesterics together, as well as the unusual situation given by the spherical shell geometry. [less ▲]

Detailed reference viewed: 55 (6 UL)
Full Text
Peer Reviewed
See detailRod packing in chiral nematic cellulose nanocrystal dispersions studied by small angle X-ray scattering and laser diffraction
Schütz, Christina; Agthe, Michael; Fall, Andreas et al

in Langmuir (2015), 31(23), 6507-6513

The packing of cellulose nanocrystals (CNC) in the anisotropic chiral nematic phase has been investigated over a wide concentration range by small angle X-ray scattering (SAXS) and laser diffraction. The ... [more ▼]

The packing of cellulose nanocrystals (CNC) in the anisotropic chiral nematic phase has been investigated over a wide concentration range by small angle X-ray scattering (SAXS) and laser diffraction. The average separation distance between the CNCs and the average pitch of the chiral nematic phase have been determined over the entire isotropic-anisotropic biphasic region. The average separation distances range from 51 nm, at the onset of the anisotropic phase formation, to 25 nm above 6 vol% (fully liquid crystalline phase) whereas the average pitch varies from 15.5 μm down to ≈2 μm as φ increases from 2.5 up to 6.5 vol%. Using the cholesteric order, we determine that the twist angle between neighboring CNCs increases from about 1 ° up to 4 ° as φ increases from 2.5 up to 6.5 vol%. The dependence of the twisting on the volume fraction was related to the increase in the magnitude of the repulsive interactions between the charged rods as the average separation distance decrease. [less ▲]

Detailed reference viewed: 93 (9 UL)
Full Text
Peer Reviewed
See detailUltra-long ordered nanowires from the concerted self-assembly of discotic liquid crystal and solvent molecules.
Park, J. H.; Kim, K. H.; Park, Y. W. et al

in Langmuir (2015), 31(34), 9432-9440

The realization of long and aligned molecular wires is a great challenge and different approaches have been proposed. Interestingly, hexapentyloxytriphenylene (HAT5) discotic liquid crystal molecules ... [more ▼]

The realization of long and aligned molecular wires is a great challenge and different approaches have been proposed. Interestingly, hexapentyloxytriphenylene (HAT5) discotic liquid crystal molecules, model system of molecules with flat and aromatic cores, can spontaneously form well aligned, micrometer long yet only tens of nanometers thick nanowires on solid surfaces. We have investigated the formation mechanism of these wires by using different solvents with selected characteristics like chemical structure, boiling point, vapor pressure and surface tension. When casting from toluene and benzene solutions, atomic force microscopy reveals that the discotics spontaneously form very long and thin wires, self-aligning along a common orientation. If instead dodecane or heptane are used, different and in general thicker structures are obtained. The chemical structure of the solvent appears to have a key role, coupling to the liquid crystal self-assembly by allowing solvent molecules to enter in the ordered structure if their design matches the core of HAT5 molecules, thereby guiding the assembly. However, also other aspects are relevant in the assembly, like the nature of the substrate or the rate of solvent evaporation, and these can favor or interfere with the self-assembly into long structures. The use of solvents with aromatic structure is advantageous not only because it affects the geometry of the assembly, promoting long wire formation, but it is also compatible with good quality of the intermolecular order, as suggested by a high anisotropy of the Raman spectra of the nanowires formed from these solvents. Finally, the electrical properties of ordered systems show a clearly higher electrical conductivity compared to the disorganized aggregates. [less ▲]

Detailed reference viewed: 28 (0 UL)
Full Text
Peer Reviewed
See detailMultifunctional responsive fibers produced by dual liquid crystal core electrospinning
Kye, Yoomee; Kim, Changsoon; Lagerwall, Jan UL

in Journal of Materials Chemistry C (2015), 3

We demonstrate that coaxial electrospinning with more than one core channel, each containing a different type of liquid crystal, can be used to produce multifunctional fibers in a one-step process. They ... [more ▼]

We demonstrate that coaxial electrospinning with more than one core channel, each containing a different type of liquid crystal, can be used to produce multifunctional fibers in a one-step process. They respond to more than one stimulus or with multiple threshold values, and the individual cores may feature different physical properties such as iridescent reflection in one core and birefringence in another. In order to ensure good fiber morphology and intact, unmixed and well separated cores, two important precautions must be taken. First, the fibers should not be collected on a hydrophilic substrate, as this will lead to severe fiber deformation and core mixing after collection, as a result of capillary forces from the water that condenses on the fiber during spinning. Second, the addition of surfactants to the polymer solution should be avoided, although it may appear beneficial for the spinning process as it reduces surface tension and increases conductivity. This is because the surfactant enters the liquid crystal core, possibly together with water in the form of inverse micelles, seriously degrading the performance of the liquid crystal. [less ▲]

Detailed reference viewed: 54 (1 UL)
Full Text
See detailDynamic and complex optical patterns from colloids of cholesteric liquid crystal droplets
Noh, Junghyun UL; Drevensek-Olenik, Irena; Yamamoto, Jun et al

in Proceedings of the SPIE (2015), 9384

Drops or shells of a planar-aligned short-pitch cholesteric liquid crystal exhibit unique optical properties due to the combination of Bragg reflection in the cholesteric helix and a radial orientation of ... [more ▼]

Drops or shells of a planar-aligned short-pitch cholesteric liquid crystal exhibit unique optical properties due to the combination of Bragg reflection in the cholesteric helix and a radial orientation of the helix axis. If such a droplet is illuminated from above, light is reflected into a continuous set of cones, the opening angles of which depend on where on the droplet the light hits its surface. For the wavelength that fulfills the Bragg condition the reflection is dramatically enhanced, yielding the light cones colored. A photonic cross communication scheme arises for certain angles, reflecting light back to the observer from a different droplet than the one originally illuminated. This gives rise to an intricate pattern of colored and circularly polarized spots. A number of interesting applications may be developed based on this pattern, e.g. in identification and authentication devices. We have carried out a detailed spectrophotometric analysis of the patterns, localized to individual spot maxima. A quantitative comparison between the measured spectra and the reflection wavelength expected from a model for the pattern generation allows us to conclude that the droplets are in fact not spherical but slightly ellipsoidal. [less ▲]

Detailed reference viewed: 107 (9 UL)
Full Text
Peer Reviewed
See detailInfluence of interface stabilisers and surrounding aqueous phases on nematic liquid crystal shells
Noh, Junghyun UL; Reguengo De Sousa, Kevin; Lagerwall, Jan UL

in Soft Matter (2015), in press

We investigate the nematic–isotropic (N–I) transition in shells of the liquid crystal 5CB, surrounded by aqueous phases that conven- tionally are considered to be immiscible with 5CB. The aqueous phases ... [more ▼]

We investigate the nematic–isotropic (N–I) transition in shells of the liquid crystal 5CB, surrounded by aqueous phases that conven- tionally are considered to be immiscible with 5CB. The aqueous phases contain either sodium dodecyl sulfate (SDS) or polyvinyl alcohol (PVA) as stabiliser, the former additionally promoting homeotropic director alignment. For all shell configurations we find a depression of the clearing point compared to pure 5CB, indicating that a non-negligible fraction of the constituents of the surrounding phases enter the shell, predominantly water. In hybrid- aligned shells, with planar outer and homeotropic inner boundary (or vice versa), the N–I transition splits into two steps, with a consequent three-step textural transformation. We explain this as a result of the order-enhancing effect of a monolayer of radially aligned SDS molecules adsorbed at the homeotropic interface. [less ▲]

Detailed reference viewed: 56 (8 UL)
Full Text
Peer Reviewed
See detailInfluence of Wetting on Morphology and Core Content in Electrospun Core-Sheath Fibers
Kim, Dae Kyom; Lagerwall, Jan UL

in ACS Applied Materials and Interfaces (2014), 6(18), 16441-16447

Coaxial electrospinning allows easy and cost-effective realization of composite fibers at the nano- and microscales. Different multifunctional materials can be incorporated with distinct localization to ... [more ▼]

Coaxial electrospinning allows easy and cost-effective realization of composite fibers at the nano- and microscales. Different multifunctional materials can be incorporated with distinct localization to specific regimes of the fiber cross section and extended internal interfaces. However, the final composite properties are affected by variations in internal structure, morphology, and material separation, and thus, nanoscale control is mandatory for high-performance application in devices. Here, we present an analysis with unprecedented detail of the cross section of liquid core-functionalized fibers, yielding information that is difficult to reveal. This is based on focused ion beam (FIB) lift-out and allowing HR-TEM imaging of the fibers together with nanoscale resolution chemical analysis using energy dispersive X-ray spectroscopy (EDS). Unexpectedly, core material escapes during spinning and ends up coating the fiber exterior and target substrate. For high core injection rate, a dramatic difference in fiber morphology is found, depending on whether the surface on which the fibers are deposited is hydrophobic or hydrophilic. The latter enhances postspinning extraction of core fluid, resulting in the loss of the functional material and collapsed fiber morphology. Finally, in situ produced TiO2 nanoparticles dispersed in the polymer appear strikingly different when the core fluid is present compared to when the polymer solution is spun on its own. [less ▲]

Detailed reference viewed: 70 (2 UL)
Full Text
Peer Reviewed
See detailMacroscopic control of helix orientation in films dried from cholesteric liquid crystalline cellulose nanocrystal suspensions

Park, Ji Hyun; Noh, Junghyun UL; Schütz, Christina et al

in Chemphyschem : A European Journal of Chemical Physics and Physical Chemistry (2014), 15(7), 1477-1484

The intrinsic ability of cellulose nanocrystals (CNCs) to self-organize into films and bulk materials with helical order in a cholesteric liquid crystal is scientifically intriguing and potentially ... [more ▼]

The intrinsic ability of cellulose nanocrystals (CNCs) to self-organize into films and bulk materials with helical order in a cholesteric liquid crystal is scientifically intriguing and potentially important for the production of renewable multifunctional materials with attractive optical properties. A major obstacle, however, has been the lack of control of helix direction, which results in a defect-rich, mosaic-like domain structure. Herein, a method for guiding the helix during film formation is introduced, which yields dramatically improved uniformity, as confirmed by using polarizing optical and scanning electron microscopy. By raising the CNC concentration in the initial suspension to the fully liquid crystalline range, a vertical helix orientation is promoted, as directed by the macroscopic phase boundaries. Further control of the helix orientation is achieved by subjecting the suspension to a circular shear flow during drying. [less ▲]

Detailed reference viewed: 55 (3 UL)
Full Text
Peer Reviewed
See detailTuneable Multicoloured Patterns From Photonic Cross Communication Between Cholesteric Liquid Crystal Droplets
Noh, Junghyun UL; Liang, Hsin-Ling; Drevensek-Olenik, Irena et al

in Journal of Materials Chemistry C (2014), 2(5), 806-810

Monodisperse droplets of planar-aligned cholesteric (N*) liquid crystal exhibit an intriguing capacity for photonic cross-communication, giving rise to colourful patterns that depend sensitively on the N ... [more ▼]

Monodisperse droplets of planar-aligned cholesteric (N*) liquid crystal exhibit an intriguing capacity for photonic cross-communication, giving rise to colourful patterns that depend sensitively on the N* pitch, droplet positions and illuminated area. The phenomenon results from a combination of omnidirectional selective reflection of N* droplets—which thus act as spherically symmetric self-assembled photonic crystals—and total internal reflection at the continuous phase surface. We outline how the unique optical properties can be employed in numerous applications. [less ▲]

Detailed reference viewed: 112 (9 UL)
Peer Reviewed
See detailCellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films
Lagerwall, Jan UL; Schütz, Christina; Salajkova, Michaela et al

in NPG Asia Materials (2014), 6(1), 80

Cellulose nanocrystals (CNCs), produced by the acid hydrolysis of wood, cotton or other cellulose-rich sources, constitute a renewable nanosized raw material with a broad range of envisaged uses: for ... [more ▼]

Cellulose nanocrystals (CNCs), produced by the acid hydrolysis of wood, cotton or other cellulose-rich sources, constitute a renewable nanosized raw material with a broad range of envisaged uses: for example, in composites, cosmetics and medical devices. The intriguing ability of CNCs to self-organize into a chiral nematic (cholesteric) liquid crystal phase with a helical arrangement has attracted significant interest, resulting in much research effort, as this arrangement gives dried CNC films a photonic band gap. The films thus acquire attractive optical properties, creating possibilities for use in applications such as security papers and mirrorless lasing. In this critical review, we discuss the sensitive balance between glass formation and liquid crystal self-assembly that governs the formation of the desired helical structure. We show that several as yet unclarified observations—some constituting severe obstacles for applications of CNCs—may result from competition between the two phenomena. Moreover, by comparison with the corresponding self-assembly processes of other rod-like nanoparticles, for example, carbon nanotubes and fd virus particles, we outline how further liquid crystal ordering phenomena may be expected from CNCs if the suspension parameters can be better controlled. Alternative interpretations of some unexpected phenomena are provided, and topics for future research are identified, as are new potential application strategies. [less ▲]

Detailed reference viewed: 46 (4 UL)
Full Text
Peer Reviewed
See detailLiquid crystal-functionalization of electrospun polymer fibers
Kim, Dae Kyom; Hwang, Minsik; Lagerwall, Jan UL

in Journal of Polymer Science. Part B, Polymer Physics (2013), 51(11), 855-867

A recently introduced new branch of applied polymer science is the production of highly functional and responsive fiber mats by means of electrospinning polymers that include liquid crystals. The liquid ... [more ▼]

A recently introduced new branch of applied polymer science is the production of highly functional and responsive fiber mats by means of electrospinning polymers that include liquid crystals. The liquid crystal, which provides the responsiveness, is most often contained inside fibers of core-sheath geometry, produced via coaxial electrospinning, but it may also be inherent to the polymer itself, for example, in case of liquid crystal elastomers. The first experiments served as proof of concept and to elucidate the basic behavior of the liquid crystal in the fibers, and the field is now ripe for more applied research targeting novel devices, in particular in the realm of wearable technology. In this perspective, we provide a bird’s eye view of the current state of the art of liquid crystal electrospinning, as well as of some relevant recent developments in the general electrospinning and liquid crystal research areas, allowing us to sketch a picture of where this young research field and its applications may be heading in the next few years. [less ▲]

Detailed reference viewed: 37 (0 UL)
Full Text
Peer Reviewed
See detailTuning the defect configurations in nematic and smectic liquid crystalline shells.
Liang, H. L.; Noh, Junghyun UL; Zentel, R. et al

in Philosophical Transactions of the Royal Society of London. Series A : Mathematical and Physical Sciences (2013), 371(1988), 20120258

Thin liquid crystalline shells surrounding and surrounded by aqueous phases can be conveniently produced using a nested capillary microfluidic system, as was first demonstrated by Fernandez-Nieves et al ... [more ▼]

Thin liquid crystalline shells surrounding and surrounded by aqueous phases can be conveniently produced using a nested capillary microfluidic system, as was first demonstrated by Fernandez-Nieves et al. in 2007. By choosing particular combinations of stabilizers in the internal and external phases, different types of alignment, uniform or hybrid, can be ensured within the shell. Here, we investigate shells in the nematic and smectic phases under varying boundary conditions, focusing in particular on textural transformations during phase transitions, on the interaction between topological defects in the director field and inclusions in the liquid crystal (LC), and on the possibility to relocate defects within the shell by rotating the shell in the gravitational field. We demonstrate that inclusions in a shell can seed defects that cannot form in a pristine shell, adding a further means of tuning the defect configuration, and that shells in which the internal aqueous phase is not density matched with the LC will gently rearrange the internal structure upon a rotation that changes the influence of gravity. Because the defects can act as anchor points for added linker molecules, allowing self-assembly of adjacent shells, the various arrangements of defects developing in these shells and the possibility of tuning the result by modifying boundary conditions, LC phase, thickness and diameter of the shell or applying external forces make this new LC configuration very attractive. [less ▲]

Detailed reference viewed: 39 (1 UL)