References of "Kuster, Andrea"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailDissecting functions of the N-terminal domain and GAS-site recognition in STAT3
Martincuks, Antons; Fahrenkamp, Dirk; Haan, Serge UL et al

in Cellular Signalling (2016), 28(8), 810-25

Signal transducer and activator of transcription 3 (STAT3) is a ubiquitous transcription factor involved in many biological processes, including hematopoiesis, inflammation and cancer progression ... [more ▼]

Signal transducer and activator of transcription 3 (STAT3) is a ubiquitous transcription factor involved in many biological processes, including hematopoiesis, inflammation and cancer progression. Cytokine-induced gene transcription greatly depends on tyrosine phosphorylation of STAT3 on a single tyrosine residue with subsequent nuclear accumulation and specific DNA sequence (GAS) recognition. In this study, we analyzed the roles of the conserved STAT3 N-terminal domain (NTD) and GAS-element binding ability of STAT3 in nucleocytoplasmic trafficking. Our results demonstrate the nonessential role of GAS-element recognition for both cytokine-induced and basal nuclear import of STAT3. Substitution of five key amino acids within the DNA-binding domain rendered STAT3 unable to bind to GAS-elements while still maintaining the ability for nuclear localization. In turn, deletion of the NTD markedly decreased nuclear accumulation upon IL-6 treatment resulting in a prolonged accumulation of phosphorylated dimers in the cytoplasm, at the same time preserving specific DNA recognition ability of the truncation mutant. Observed defect in nuclear localization could not be explained by flawed importin-α binding, since both wild-type and NTD deletion mutant of STAT3 could precipitate both full-length and autoinhibitory domain (∆ IBB) deletion mutants of importin-α5, as well as ∆ IBB-α3 and ∆ IBB-α7 isoforms independently of IL-6 stimulation. Despite its inability to translocate to the nucleus upon IL-6 stimulation, the NTD lacking mutant still showed nuclear accumulation in resting cells similar to wild-type upon inhibition of nuclear export by leptomycin B. At the same time, blocking the nuclear export pathway could not rescue cytoplasmic trapping of phosphorylated STAT3 molecules without NTD. Moreover, STAT3 mutant with dysfunctional SH2 domain (R609Q) also localized in the nucleus of unstimulated cells after nuclear export blocking, while upon cytokine treatment the subcellular localization of this mutant had not changed. Our findings support the concept that basal nucleocytoplasmic shuttling of STAT3 is different from active cytokine-induced nuclear import and does not require conserved N- or SH2-terminal domains, preformed dimer formation and GAS-element-specific DNA recognition. [less ▲]

Detailed reference viewed: 44 (0 UL)
Full Text
Peer Reviewed
See detailDevelopment of an IL-6 inhibitor based on the functional analysis of murine IL-6Ralpha(1).
Wiesinger, Monique UL; Haan, Serge UL; Wuller, Stefan et al

in Chemistry & Biology (2009), 16(7), 783-94

Dysregulated cytokine production contributes to inflammatory and proliferative diseases. Therefore, inhibition of proinflammatory mediators such as TNF, IL-1, and IL-6 is of great clinical relevance ... [more ▼]

Dysregulated cytokine production contributes to inflammatory and proliferative diseases. Therefore, inhibition of proinflammatory mediators such as TNF, IL-1, and IL-6 is of great clinical relevance. Actual strategies are aimed at preventing receptor activation through sequestration of the ligand. Here we describe the development of an inhibitor of murine IL-6 based on fused receptor fragments. Molecular modeling-guided analysis of the murine IL-6Ralpha revealed that mutations in the Ig-like domain D1 severely affect protein function, although D1 is not directly involved in the ligand-binding interface. The resulting single chain IL-6 inhibitor (mIL-6-RFP) consisting of domains D1-D3 of mgp130, a flexible linker, and domains D1-D3 of mIL-6Ralpha is a highly potent and specific IL-6 inhibitor. mIL-6-RFP will permit further characterization of the role of IL-6 in various disease models and could ultimately lead to anti-IL-6 therapy. [less ▲]

Detailed reference viewed: 47 (3 UL)
Peer Reviewed
See detailSTAT3 is enriched in nuclear bodies.
Herrmann, Andreas; Sommer, Ulrike; Pranada, Albert L. et al

in Journal of Cell Science (2004), 117(Pt 2), 339-49

Signal transducer and activator of transcription 3 (STAT3) is a transcription factor that is involved in a variety of biological functions. It is essential for the signal transduction of interleukin-6 (IL ... [more ▼]

Signal transducer and activator of transcription 3 (STAT3) is a transcription factor that is involved in a variety of biological functions. It is essential for the signal transduction of interleukin-6 (IL-6) and related cytokines. In response to IL-6 stimulation STAT3 becomes phosphorylated and translocates into the nucleus where it binds to enhancer sequences of target genes. We found that activated STAT3 is enriched in dot-like structures within the nucleus, which we termed STAT3 nuclear bodies. To examine the dynamics of STAT3 nuclear body formation, a fusion protein of STAT3 and yellow fluorescent protein (YFP) was constructed. Studies in living cells have shown that the appearance of STAT3 nuclear bodies is transient, correlating with the timecourse of tyrosine-phosphorylation of STAT3. Furthermore, we show by fluorescence recovery after photobleaching (FRAP) analysis that STAT3 within nuclear bodies consists of a highly mobile and an immobile fraction. Colocalization studies provided evidence that these bodies are accompanied with CREB binding protein (CBP) and acetylated histone H4, which are markers for transcriptionally active chromatin. Moreover, STAT3 nuclear bodies in HepG2 cells are not colocalized with promyelocytic leukemia oncoprotein (PML)-containing bodies; neither is a sumoylation of activated STAT3 detectable. Taken together, our data suggest that STAT3 nuclear bodies are either directly involved in active gene transcription or they serve as reservoirs of activated STAT3. [less ▲]

Detailed reference viewed: 64 (17 UL)
Peer Reviewed
See detailA fusion protein of the gp130 and interleukin-6Ralpha ligand-binding domains acts as a potent interleukin-6 inhibitor.
Ancey, Cecile; Kuster, Andrea; Haan, Serge UL et al

in Journal of Biological Chemistry (2003), 278(19), 16968-72

Interleukin (IL)-6 is involved in the maintenance and progression of several diseases such as multiple myeloma, rheumatoid arthritis, or osteoporosis. The present work aims at the development of an IL-6 ... [more ▼]

Interleukin (IL)-6 is involved in the maintenance and progression of several diseases such as multiple myeloma, rheumatoid arthritis, or osteoporosis. The present work aims at the development of an IL-6 inhibitor for the use in anti-cytokine therapies. The IL-6 receptor is composed of two different subunits, an alpha-subunit (IL-6Ralpha) that binds IL-6 with low affinity and a beta-subunit (gp130) that binds the IL-6.IL-6Ralpha complex with high affinity and as a result triggers intracellular signaling. In its soluble form, gp130 is a natural antagonist that neutralizes IL-6.soluble IL-6Ralpha complexes. It was our strategy to appropriately fuse the two receptor subunit fragments involved in IL-6 receptor complex formation to bind IL-6 with high affinity and to antagonize its effects. The ligand-binding domains of gp130 (D1-D2-D3) and IL-6Ralpha (D2-D3) were connected using three different linkers. The resulting constructs were expressed in stably transfected insect cells and tested for their ability to inhibit IL-6 activity in several in vitro systems. All fusion proteins were strong inhibitors of IL-6 signaling and abrogated IL-6-induced phosphorylation of STAT3, proliferation of transfected Ba/F3 cells, and induction of acute-phase protein synthesis. As intended, the fused receptors were much more effective than the separately expressed soluble receptor proteins. The fusion protein strategy presented here can also be applied to other cytokines that signal via receptors composed of two different subunits to design new potent inhibitors for anti-cytokine therapies. [less ▲]

Detailed reference viewed: 40 (3 UL)