References of "Krivochiza, Jevgenij 50021807"
     in
Bookmark and Share    
Peer Reviewed
See detailClosed-Form Solution for Computationally Efficient Symbol-Level Precoding
Krivochiza, Jevgenij UL; Merlano Duncan, Juan Carlos UL; Andrenacci, Stefano UL et al

Scientific Conference (2018, December)

We present a convex optimization based Symbol-Level Precoding (SLP) for sum power minimization and propose the low-latency closed-form algorithm to find a heuristic solution to the optimization problem ... [more ▼]

We present a convex optimization based Symbol-Level Precoding (SLP) for sum power minimization and propose the low-latency closed-form algorithm to find a heuristic solution to the optimization problem. The technique exploits constructive interference at the multi-user MIMO systems and minimizes the sum power of the transmitted precoded signal per each symbol slot. As a result, the received signals gain extra Signal-to-Noise Ratio (SNR), which leads to the improved data rate and energy efficiency. We benchmark the low-complexity algorithm for solving the optimization technique against the conventional Fast Non-Negative Least Squares algorithm (NNLS). The demonstrated design of the SLP technique combined with the proposed closed-form algorithm has low computational complexity and fast processing time, which is applicable in low-latency high-throughput satellite communication systems. [less ▲]

Detailed reference viewed: 29 (0 UL)
Full Text
Peer Reviewed
See detailHardware Demonstration of Precoded Communications in Multi-Beam UHTS Systems
Merlano Duncan, Juan Carlos UL; Krivochiza, Jevgenij UL; Andrenacci, Stefano UL et al

Scientific Conference (2018, October)

In this paper, we present a hardware test-bed to demonstrate closed-loop precoded communications for interference mitigation in the forward link of the multi-beam ultra-high throughput satellite systems ... [more ▼]

In this paper, we present a hardware test-bed to demonstrate closed-loop precoded communications for interference mitigation in the forward link of the multi-beam ultra-high throughput satellite systems. The hardware demonstrator is a full-chain closed-loop communication system with a multi-beam DVB-S2X compliant gateway, a satellite payload and MIMO channel emulator and a set of DVB-S2X user terminals with real-time CSI estimation and feedback. We experimentally show the feasibility of Precoding implementation in satellite communications based on the superframe structure DVB-S2X standard. Using the test-bed we have a possibility to run real-time precoded DVB-S2X communication and benchmark its performance under realistic environment. The hardware demonstrator is suitable to perform realistic benchmarks of Block- and Symbol-level Precoding techniques for multicast and unicast user scheduling scenarios. [less ▲]

Detailed reference viewed: 24 (3 UL)
Full Text
Peer Reviewed
See detailComputationally and Energy Efficient Symbol-Level Precoding Communications Demonstrator
Krivochiza, Jevgenij UL; Merlano Duncan, Juan Carlos UL; Andrenacci, Stefano UL et al

in Physical Communication (2018), 28

We present a precoded multi-user communication test-bed to demonstrate forward link interference mitigation techniques in a multi-beam satellite system scenario, which will enable a full frequency reuse ... [more ▼]

We present a precoded multi-user communication test-bed to demonstrate forward link interference mitigation techniques in a multi-beam satellite system scenario, which will enable a full frequency reuse scheme. The developed test-bed provides an end-to-end precoding demonstration, which includes a transmitter, a multi-beam satellite channel emulator and user receivers. Each of these parts can be reconfigured accordingly to the desired test scenario. Precoded communications allow full frequency reuse in multiple-input multiple-output (MIMO) channel environments, where several coordinated antennas simultaneously transmit to a number of independent receivers. The developed real-time transmission test-bed assist in demonstrating, designing and benchmarking of the new Symbol-Level Precoding (SLP) techniques, where the data information is used, along with the channel state information, in order to exploit the multi-user interference and transform it into the useful power at the receiver side. The demonstrated SLP technique is designed in order to be computationally efficient, and can be generalized to others multi-channel interference scenarios. [less ▲]

Detailed reference viewed: 124 (20 UL)
Full Text
Peer Reviewed
See detailSDR Implementation of a Testbed for Real-Time Interference Detection with Signal Cancellation
Politis, Christos; Maleki, Sina UL; Merlano Duncan, Juan Carlos UL et al

in IEEE Access (2018)

Interference greatly affects the quality of service of wireless and satellite communications, having also a financial impact for the telecommunication operators. Therefore, as the interfering events ... [more ▼]

Interference greatly affects the quality of service of wireless and satellite communications, having also a financial impact for the telecommunication operators. Therefore, as the interfering events increase due to the deployment of new services, there is an increasing demand for the detection and mitigation of interference. There are several interference detectors in the literature, evaluated by using extensive simulations. However, this paper goes one step further, designing, implementing and evaluating the performance of the developed interference detection algorithms experimentally using a software defined radio, and particularly the universal software radio peripheral platform. A realistic communication system is implemented, consisting of a transmitter, a channel emulator and a receiver. Based on this system, we implement all the appropriate communications features such as pulse shaping, synchronization and demodulation. The real-time system implementation is validated and evaluated through signal and interference detection. We observe that the interference detection threshold is critical to the functioning of the system. Several existing interference detection techniques fail in practice due to this fact. In this paper, we propose a robust and practically implementable method the selection of threshold. Finally, we present real-time experimental results for the probabilities of false alarm and detection in order to verify the accuracy of our study and reinforce our theoretical analysis. [less ▲]

Detailed reference viewed: 88 (10 UL)
Full Text
Peer Reviewed
See detailComputationally Efficient Symbol-Level Precoding Communications Demonstrator
Merlano Duncan, Juan Carlos UL; Krivochiza, Jevgenij UL; Andrenacci, Stefano UL et al

in IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (2017, October)

We present a precoded multi-user communication test-bed to demonstrate forward link interference mitigation techniques in a multi-beam satellite system scenario which will enable a full frequency reuse ... [more ▼]

We present a precoded multi-user communication test-bed to demonstrate forward link interference mitigation techniques in a multi-beam satellite system scenario which will enable a full frequency reuse scheme. The developed test-bed provides an end-to-end precoding demonstration, which includes a transmitter, a multi-beam satellite channel emulator and user receivers. Each of these parts can be reconfigured accordingly to the desired test scenario. Precoded communications allow full frequency reuse in multiple-input multiple-output (MIMO) channel environments, where several coordinated antennas simultaneously transmit to a number of independent receivers. The developed real-time transmission test-bed assist in demonstrating, designing and benchmarking of the new Symbol-Level Precoding (SLP) techniques, where the data information is used, along with the channel state information, in order to exploit the multi-user interference and transform it into useful power at the receiver side. The demonstrated SLP techniques are designed in order to be computationally efficient, and can be generalized to others multi-channel interference scenarios. [less ▲]

Detailed reference viewed: 93 (23 UL)
Full Text
Peer Reviewed
See detailLow Complexity Symbol-Level Design for Linear Precoding Systems
Krivochiza, Jevgenij UL; Kalantari, Ashkan UL; Chatzinotas, Symeon UL et al

in Heusdens, Richard; Weber, Jos H. (Eds.) PROCEEDINGS of the 2017 Symposium on Information Theory and Signal Processing in the Benelux (2017, May 11)

The practical utilization of the symbol-level precoding in MIMO systems is challenging since the implementation of the sophisticated optimization algorithms must be done with reasonable computational ... [more ▼]

The practical utilization of the symbol-level precoding in MIMO systems is challenging since the implementation of the sophisticated optimization algorithms must be done with reasonable computational resources. In the real implementation of MIMO precoding systems, the processing time for each set of symbols is a crucial parameter, especially in the high-throughput mode. In this work, a symbol-level optimization algorithm with reduced complexity is devised. Performance of a symbol-level precoder is shown to improve in terms of the processing times per set of symbols. [less ▲]

Detailed reference viewed: 150 (53 UL)