References of "Kitano, Hiroaki"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailIntegrating Pathways of Parkinson's Disease in a Molecular Interaction Map
Fujita, Kazuhiro A.; Ostaszewski, Marek UL; Matsuoka, Yukiko et al

in Molecular Neurobiology (2014)

Parkinson's disease (PD) is a major neurodegenerative chronic disease, most likely caused by a complex interplay of genetic and environmental factors. Information on various aspects of PD pathogenesis is ... [more ▼]

Parkinson's disease (PD) is a major neurodegenerative chronic disease, most likely caused by a complex interplay of genetic and environmental factors. Information on various aspects of PD pathogenesis is rapidly increasing and needs to be efficiently organized, so that the resulting data is available for exploration and analysis. Here we introduce a computationally tractable, comprehensive molecular interaction map of PD. This map integrates pathways implicated in PD pathogenesis such as synaptic and mitochondrial dysfunction, impaired protein degradation, alpha-synuclein pathobiology and neuroinflammation. We also present bioinformatics tools for the analysis, enrichment and annotation of the map, allowing the research community to open new avenues in PD research. The PD map is accessible at http://minerva.uni.lu/pd_map . [less ▲]

Detailed reference viewed: 402 (40 UL)
Full Text
Peer Reviewed
See detailThe Parkinson's Disease Map: A Framework for Integration, Curation and Exploration of Disease-related Pathways
Ostaszewski, Marek UL; Fujita, Kazuhiro; Matsuoka, Yukiko et al

Poster (2013, March 09)

Objectives: The pathogenesis of Parkinson's Disease (PD) is multi-factorial and age-related, implicating various genetic and environmental factors. It becomes increasingly important to develop new ... [more ▼]

Objectives: The pathogenesis of Parkinson's Disease (PD) is multi-factorial and age-related, implicating various genetic and environmental factors. It becomes increasingly important to develop new approaches to organize and explore the exploding knowledge of this field. Methods: The published knowledge on pathways implicated in PD, such as synaptic and mitochondrial dysfunction, alpha-synuclein pathobiology, failure of protein degradation systems and neuroinflammation has been organized and represented using CellDesigner. This repository has been linked to a framework of bioinformatics tools including text mining, database annotation, large-scale data integration and network analysis. The interface for online curation of the repository has been established using Payao tool. Results: We present the PD map, a computer-based knowledge repository, which includes molecular mechanisms of PD in a visually structured and standardized way. A bioinformatics framework that facilitates in-depth knowledge exploration, extraction and curation supports the map. We discuss the insights gained from PD map-driven text mining of a corpus of over 50 thousands full text PD-related papers, integration and visualization of gene expression in post mortem brain tissue of PD patients with the map, as well as results of network analysis. Conclusions: The knowledge repository of disease-related mechanisms provides a global insight into relationships between different pathways and allows considering a given pathology in a broad context. Enrichment with available text and bioinformatics databases as well as integration of experimental data supports better understanding of complex mechanisms of PD and formulation of novel research hypotheses. [less ▲]

Detailed reference viewed: 457 (70 UL)
Full Text
Peer Reviewed
See detailVisualization of omics data for systems biology
Gehlenborg, Nils; O'Donoghue, Sean I.; Baliga, Nitin S. et al

in Nature Methods (2010), 7(3), 56-68

High-throughput studies of biological systems are rapidly accumulating a wealth of 'omics'-scale data. Visualization is a key aspect of both the analysis and understanding of these data, and users now ... [more ▼]

High-throughput studies of biological systems are rapidly accumulating a wealth of 'omics'-scale data. Visualization is a key aspect of both the analysis and understanding of these data, and users now have many visualization methods and tools to choose from. The challenge is to create clear, meaningful and integrated visualizations that give biological insight, without being overwhelmed by the intrinsic complexity of the data. In this review, we discuss how visualization tools are being used to help interpret protein interaction, gene expression and metabolic profile data, and we highlight emerging new directions. [less ▲]

Detailed reference viewed: 58 (1 UL)