References of "Kim, Suntae"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailLearning to Spot and Refactor Inconsistent Method Names
Liu, Kui UL; Kim, Dongsun; Bissyande, Tegawendé François D Assise UL et al

in 41st ACM/IEEE International Conference on Software Engineering (ICSE) (2019, May)

To ensure code readability and facilitate software maintenance, program methods must be named properly. In particular, method names must be consistent with the corresponding method implementations ... [more ▼]

To ensure code readability and facilitate software maintenance, program methods must be named properly. In particular, method names must be consistent with the corresponding method implementations. Debugging method names remains an important topic in the literature, where various approaches analyze commonalities among method names in a large dataset to detect inconsistent method names and suggest better ones. We note that the state-of-the-art does not analyze the implemented code itself to assess consistency. We thus propose a novel automated approach to debugging method names based on the analysis of consistency between method names and method code. The approach leverages deep feature representation techniques adapted to the nature of each artifact. Experimental results on over 2.1 million Java methods show that we can achieve up to 15 percentage points improvement over the state-of-the-art, establishing a record performance of 67.9% F1-measure in identifying inconsistent method names. We further demonstrate that our approach yields up to 25% accuracy in suggesting full names, while the state-of-the-art lags far behind at 1.1% accuracy. Finally, we report on our success in fixing 66 inconsistent method names in a live study on projects in the wild. [less ▲]

Detailed reference viewed: 199 (13 UL)
Full Text
Peer Reviewed
See detailAutomatic Identifier Inconsistency Detection Using Code Dictionary
Kim, Suntae; Kim, Dongsun UL

in Empirical Software Engineering (2016), 21(2), 565-604

Inconsistent identifiers make it difficult for developers to understand source code. In particular, large software systems written by several developers can be vulnerable to identifier inconsistency ... [more ▼]

Inconsistent identifiers make it difficult for developers to understand source code. In particular, large software systems written by several developers can be vulnerable to identifier inconsistency. Unfortunately, it is not easy to detect inconsistent identifiers that are already used in source code. Although several techniques have been proposed to address this issue, many of these techniques can result in false alarms since such techniques do not accept domain words and idiom identifiers that are widely used in programming practice. This paper proposes an approach to detecting inconsistent identifiers based on a custom code dictionary. It first automatically builds a Code Dictionary from the existing API documents of popular Java projects by using an Natural Language Processing (NLP) parser. This dictionary records domain words with dominant part-of-speech (POS) and idiom identifiers. This set of domain words and idioms can improve the accuracy when detecting inconsistencies by reducing false alarms. The approach then takes a target program and detects inconsistent identifiers of the program by leveraging the Code Dictionary. We provide CodeAmigo, a GUI-based tool support for our approach. We evaluated our approach on seven Java based open-/proprietarysource projects. The results of the evaluations show that the approach can detect inconsistent identifiers with 85.4% precision and 83.59% recall values. In addition, we conducted an interview with developers who used our approach, and the interview confirmed that inconsistent identifiers frequently and inevitably occur in most software projects. The interviewees then stated that our approach can help to better detect inconsistent identifiers that would have been missed through manual detection. [less ▲]

Detailed reference viewed: 160 (13 UL)
Peer Reviewed
See detailAPI Document Quality for Resolving Deprecated APIs
Ko, Deokyoon; Ma, Kyeongwook; Park, Sooyong et al

Scientific Conference (2014, December 01)

Detailed reference viewed: 161 (11 UL)