References of "Kabore, Brice Wendlassida 50024438"
     in
Bookmark and Share    
See detailIntegrated micromechanical model for slope stability analysis
Kabore, Brice Wendlassida UL; Peters, Bernhard UL

Scientific Conference (2019, April 09)

Advances in supercomputing hardware have made it possible to handle highly complex geomechanical analysis with large data. Thus, particle-based methods are gaining an ever-increasing interest with ... [more ▼]

Advances in supercomputing hardware have made it possible to handle highly complex geomechanical analysis with large data. Thus, particle-based methods are gaining an ever-increasing interest with massively parallel programs being developed. These methods have been applied to the analysis of failure mechanisms and scenarios such as mass movement in landslides, avalanches under static, dynamic or seismic loading condition. They provide deep insights into the meso and micro-scale mechanisms leading to macroscopic instabilities. This contribution describes a micromechanical model for stability analysis and simulation in natural or man-made slopes under complex loading and boundary conditions. Based on the micromechanics of loose granular and compacted geomaterial, microstructural change, viscoelastic deformations, fracture, and healing are explicitly integrated into a coupled discrete particle and beam lattice model. Stress-based failure criteria and energy based dissipation and frictional contact are employed. Both gravity increase and strength reduction methods have been employed to evaluate the Factor of Safety (FoS) and potential failure surface and compared. With an emphasis on the impact of the microstructure and its spatial variability on stress-induced microcracks and crack propagation, this study outlines material models and properties relevant to stability analysis. Special focus has been put on layered slopes which present varying shear strength along the depth formed over time according to pressure, temperature, and moisture such as snowpack. This microstructural approach unifies geometrical and material information and allows the structural assembling layers of different strength. [less ▲]

Detailed reference viewed: 41 (8 UL)
Full Text
Peer Reviewed
See detailMULTI-SCALE MODELLING OF SNOW MECHANICS
Kabore, Brice Wendlassida UL; Peters, Bernhard UL; Willibald, C. et al

in 41st Solid Mechanics Conference (2018, August 27)

Detailed reference viewed: 13 (1 UL)
Full Text
See detailMicromechanical model for sintering and damage in viscoelastic porous ice and snow. Part I: Theory
Kabore, Brice Wendlassida UL; Peters, Bernhard UL

E-print/Working paper (2018)

Ice and snow have sometime been classified as a viscoelastic or viscoplastic mate- rial according to temperature, strain rate, pressure and time scale. Throughout experimental studies presented in the ... [more ▼]

Ice and snow have sometime been classified as a viscoelastic or viscoplastic mate- rial according to temperature, strain rate, pressure and time scale. Throughout experimental studies presented in the literature, it has been observed that at very low temperatures or high strain rate, porous ice and snow exhibit brittle behavior, but experience high viscous and plastic flow at temperatures closed to the melting point and low rates. At the macroscopic level nonlinearity is not necessarily attributed to material level permanent changes or yielding but mainly to micro cracks, porosity collapse and crack propagation. This paper attempts to address this complex behavior with a full microstructure based model. [less ▲]

Detailed reference viewed: 18 (2 UL)
Peer Reviewed
See detailBonded Particle Model for Numerical Analysis of Concrete Fracture under Impact Loading
Kabore, Brice Wendlassida UL; Peters, Bernhard UL

Scientific Conference (2018, July 04)

Linear elastic fracture mechanics and homogenization techniques have shown limitations in concrete fracture analysis due to the existence of localized damage zone and instabilities near the crack region ... [more ▼]

Linear elastic fracture mechanics and homogenization techniques have shown limitations in concrete fracture analysis due to the existence of localized damage zone and instabilities near the crack region. Concrete structures which are primarily quasi-brittle material present rate dependent failure modes, and fracture properties under impact or blast loading. Experiments show that concrete may exhibit viscoplasticity, strain rate and hydrostatic pressure dependent damage and crack propagation. This paper describes an explicit approach of discrete particles bonded with Euler-Bernoulli beams to simulate dynamic fracture in concrete. The fracture is initiated in the beam network and propagated and energy is dissipated according to the prescribed fracture energy. The bonded particle model has shown advanced capability to predict processes including microcracking, crack deflection, bridging and branching occurring in the fracture process zone under impact loading. It can also predict to some extent the crack propagation velocity. A quasi-brittle fracture model with rate dependent strength is elaborated to capture rate dependent behavior at high and moderate strain rates where the concrete exhibit increased load carrying capacity. In order to ensure stability of this program, numerical localnon viscous damping is used. The effect of particle size and bonds in overall response was also investigated. [less ▲]

Detailed reference viewed: 13 (2 UL)
Full Text
Peer Reviewed
See detailMultiscale model of sintering: diffusion and plastic flow
Kabore, Brice Wendlassida UL; Peters, Bernhard UL

Scientific Conference (2017, September 27)

Impacting particles or static aggregated particles at high temperature may undergo a permanent change of shape modifying the microstructure. Two particles in contact can develop some bonds within sub ... [more ▼]

Impacting particles or static aggregated particles at high temperature may undergo a permanent change of shape modifying the microstructure. Two particles in contact can develop some bonds within sub-second time. This fast sintering force in the particular case of the snow contribute to the rheological behavior and grain rearrangement [1]. Understanding the kinetics of sintering in granular material is of great importance in some engineering applications. For decades, diffusional processes have received more attention in investigations related to the mechanisms behind sintering [2]. Some works have suggested that the plastic flow might be neglected in sintering process for stresses are not high enough to cause dislocation. However, some studies have showed that stresses experienced in fine particles necks can be high enough and even lead to plasticity driven sintering. The importance of each mechanism in the sintering process may lie in the temporal and spatial scale of interest. Increasing importance is being accorded to the role of plastic flow in sintering. however, several investigations have proved that the conventional plasticity theory may fail to predict plastic activity at micro-scale, The objective of this work is to develop adequate computational model that includes instantaneous and time-dependent plastic flow at micro-scale. We aim at extending existing models of sintering and plasticity to cope with multiple spatial and temporal scales simulations using Extended Discrete Element Method. The numerical results are compare to experimental data on snow. [less ▲]

Detailed reference viewed: 136 (18 UL)
See detailDynamic Sintering of a High Temperature Granular Material: Experiments and Simulations
Willivald, Carolin; Kabore, Brice Wendlassida UL; Szabó, Denes et al

Scientific Conference (2017, September 26)

Snow changes from a porous solid to a granular material during deformation with high strain rates. This transition occurs in many cases where snow is relevant to engineering problems (vehicle mobility ... [more ▼]

Snow changes from a porous solid to a granular material during deformation with high strain rates. This transition occurs in many cases where snow is relevant to engineering problems (vehicle mobility, avalanche formation and prevention, skiing etc.). For the description of the fast deformation of snow the discrete element method (DEM) is a valuable tool, as it is able to account for both states and the transition between them: the interaction of the loose and bonded particles. For the development of a physically relevant DEM snow model [1] we investigate experimentally along with simulations the basic processes of the granular behavior of snow. In the granular state, sintering plays an important role for the dynamics of the particles. Via sintering the high temperature ice particles (homologous temperature 0.95) bond together and change the structure and the physical properties of the material. This temperature dependent sintering process, which happens in the time range of milliseconds to hours, is in the focus of the present work. The fast sintering of ice in the range of milliseconds has scarcely been investigated. However, from sintering studies with ice cones (radius of 3 mm) we know, that the sintering force is closely related to the contact area of the particles [2]. As the contact area changes considerably for complicated shapes, exhibited by natural snow crystals, we consider different snow types (grain shape and size), besides ice beads as spherical model snow. The latter one is used to exclude shape effects and to directly compare experiments to simulations with spherical particles. To be able to take the effects of the grain shape into account and to examine sintering in the time range of interest (seconds), we perform angle of repose experiments and simulations. Snow is sieved to pile up on a flat base until an angle of equilibrium, the angle of repose, is formed. This angle increases with the sintering of the particles, but also with the inter-particle friction. To analyze the contribution of the friction and the grain shape without sintering, we perform the experiments at a low temperature °C ( 0.87), where sintering can be neglected; thus, the angle of repose is determined by inter-particle friction. With these measurements, we calibrate the simulations. At higher temperatures (up to °C) sintering changes the angle of repose, and a physically relevant sintering law for real snow is established in the simulations. [less ▲]

Detailed reference viewed: 12 (3 UL)