References of "Janji, B"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailTargeting autophagy inhibits growth by enhancing NK cells infiltration in a CCL5-dependent manner
Mgrditchian, T; Arakelian, T; Paggetti, J et al

in Proceedings of the National Academy of Sciences of the United States of America (2017), 114((44)), 9271-9279

While blocking tumor growth by targeting autophagy is well established, its role on the infiltration of natural killer (NK) cells into tumors remains unknown. Here, we investigate the impact of targeting ... [more ▼]

While blocking tumor growth by targeting autophagy is well established, its role on the infiltration of natural killer (NK) cells into tumors remains unknown. Here, we investigate the impact of targeting autophagy gene Beclin1 (BECN1) on the infiltration of NK cells into melanomas. We show that, in addition to inhibiting tumor growth, targeting BECN1 increased the infiltration of functional NK cells into melanoma tumors. We provide evidence that driving NK cells to the tumor bed relied on the ability of autophagy-defective tumors to transcriptionally overexpress the chemokine gene CCL5 Such infiltration and tumor regression were abrogated by silencing CCL5 in BECN1-defective tumors. Mechanistically, we show that the up-regulated expression of CCL5 occurred through the activation of its transcription factor c-Jun by a mechanism involving the impairment of phosphatase PP2A catalytic activity and the subsequent activation of JNK. Similar to BECN1, targeting other autophagy genes, such as ATG5, p62/SQSTM1, or inhibiting autophagy pharmacologically by chloroquine, also induced the expression of CCL5 in melanoma cells. Clinically, a positive correlation between CCL5 and NK cell marker NKp46 expression was found in melanoma patients, and a high expression level of CCL5 was correlated with a significant improvement of melanoma patients' survival. We believe that this study highlights the impact of targeting autophagy on the tumor infiltration by NK cells and its benefit as a novel therapeutic approach to improve NK-based immunotherapy. [less ▲]

Detailed reference viewed: 28 (8 UL)
Peer Reviewed
See detailPhosphorylation on Ser5 increases the F-actin-binding activity of L-plastin and promotes its targeting to sites of actin assembly in cells
Janji, B.; Giganti, A.; De Corte, V. et al

in Journal of Cell Science (2006), 119(9), 1947-1960

L-plastin, a malignant transformation-associated protein, is a member of a large family of actin filament cross-linkers. Here, we analysed how phosphorylation of L-plastin on Ser5 of the headpiece domain ... [more ▼]

L-plastin, a malignant transformation-associated protein, is a member of a large family of actin filament cross-linkers. Here, we analysed how phosphorylation of L-plastin on Ser5 of the headpiece domain regulates its intracellular distribution and its interaction with F-actin in transfected cells and in in vitro assays. Phosphorylated wild-type L-plastin localised to the actin cytoskeleton in transfected Vero cells. Ser5Ala substitution reduced the capacity of L-plastin to localise with peripheral actin-rich membrane protrusions. Conversely, a Ser5Glu variant mimicking a constitutively phosphorylated state, accumulated in actin-rich regions and promoted the formation of F-actin microspikes in two cell lines. Similar to phosphorylated wild-type L-plastin, this variant remained associated with cellular F-actin in detergent-treated cells, whereas the Ser5Ala variant was almost completely extracted. When compared with non-phosphorylated protein, phosphorylated L-plastin and the Ser5Glu variant bound F-actin more efficiently in an in vitro assay. Importantly, expression of L-plastin elicited collagen invasion in HEK293T cells, in a manner dependent on Ser5 phosphorylation. Based on our findings, we propose that conversely to other calponin homology (CH)-domain family members, phosphorylation of L-plastin switches the protein from a low-activity to a high-activity state. Phosphorylated L-plastin might act as an integrator of signals controlling the assembly of the actin cytoskeleton and cell motility in a 3D-space. [less ▲]

Detailed reference viewed: 72 (1 UL)
Peer Reviewed
See detailActin-filament cross-linking protein T-plastin increases Arp2/3-mediated actin-based movement
Giganti, A.; Plastino, J.; Janji, B. et al

in Journal of Cell Science (2005), 118(6), 1255-1265

Increasing evidence suggests that actin cross-linking or bundling proteins might not only structure the cortical actin cytoskeleton but also control actin dynamics. Here, we analyse the effects of T ... [more ▼]

Increasing evidence suggests that actin cross-linking or bundling proteins might not only structure the cortical actin cytoskeleton but also control actin dynamics. Here, we analyse the effects of T-plastin/T-fimbrin, a representative member of an important actin-filament cross-linking protein by combining a quantitative biomimetic motility assay with biochemical and cell-based approaches. Beads coated with the VCA domain of the Wiskott/Aldrich-syndrome protein (WASP) recruit the actin-nucleating Arp2/3 complex, polymerize actin at their surface and undergo movement when placed in cell-free extracts. T-Plastin increased the velocity of VCA beads 1.5 times, stabilized actin comets and concomitantly displaced cofilin, an actin-depolymerizing protein. T-Plastin also decreased the F-actin disassembly rate and inhibited cofilin-mediated depolymerization of actin filaments in vitro. Importantly, a bundling-incompetent variant comprising the first actin-binding domain (ABD1) had similar effects. In cells, this domain induced the formation of long actin cables to which other actin-regulating proteins were recruited. Altogether, these results favor a mechanism in which binding of ABD1 controls actin turnover independently of cross-link formation. In vivo, this activity might contribute to the assembly and maintenance of the actin cytoskeleton of plasma-membrane protrusions. [less ▲]

Detailed reference viewed: 75 (0 UL)