References of "Iniguez, Jorge"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailPhotoinduced Phase Transitions in Ferroelectrics
Paillard, Charles; Torun, Engin UL; Wirtz, Ludger UL et al

in PHYSICAL REVIEW LETTERS (2019), 123(8), 087601-6

Ferroic materials naturally exhibit a rich number of functionalities, which often arise from thermally, chemically, or mechanically induced symmetry breakings or phase transitions. Based on density ... [more ▼]

Ferroic materials naturally exhibit a rich number of functionalities, which often arise from thermally, chemically, or mechanically induced symmetry breakings or phase transitions. Based on density functional calculations, we demonstrate here that light can drive phase transitions as well in ferroelectric materials such as the perovskite oxides lead titanate and barium titanate. Phonon analysis and total energy calculations reveal that the polarization tends to vanish under illumination, to favor the emergence of nonpolar phases, potentially antiferroelectric, and exhibiting a tilt of the oxygen octahedra. Strategies to tailor photoinduced phases based on phonon instabilities in the electronic ground state are also discussed. [less ▲]

Detailed reference viewed: 21 (0 UL)
Full Text
Peer Reviewed
See detailOptical control of polarization in ferroelectric heterostructures
Tao, Li; Lipatov, Alexej; Lu, Haidong et al

in Nature Communications (2018), 9

In the ferroelectric devices, polarization control is usually accomplished by application of an electric field. In this paper, we demonstrate optically induced polarization switching in BaTiO3-based ... [more ▼]

In the ferroelectric devices, polarization control is usually accomplished by application of an electric field. In this paper, we demonstrate optically induced polarization switching in BaTiO3-based ferroelectric heterostructures utilizing a two-dimensional narrow-gap semiconductor MoS2 as a top electrode. This effect is attributed to the redistribution of the photo-generated carriers and screening charges at the MoS2/BaTiO3 interface. Specifically, a two-step process, which involves formation of intra-layer excitons during light absorption followed by their decay into inter-layer excitons, results in the positive charge accumulation at the interface forcing the polarization reversal from the upward to the downward direction. Theoretical modeling of the MoS2 optical absorption spectra with and without the applied electric field provides quantitative support for the proposed mechanism. It is suggested that the discovered effect is of general nature and should be observable in any heterostructure comprising a ferroelectric and a narrow gap semiconductor. [less ▲]

Detailed reference viewed: 73 (9 UL)
Full Text
Peer Reviewed
See detailRules and mechanisms governing octahedral tilts in perovskites under pressure
Xiang, H. J.; Guennou, Mael UL; Iniguez, Jorge et al

in PHYSICAL REVIEW B (2017), 96(5),

The rotation of octahedra (octahedral tilting) is common in ABO(3) perovskites and relevant to many physical phenomena, ranging from electronic and magnetic properties, metal-insulator transitions to ... [more ▼]

The rotation of octahedra (octahedral tilting) is common in ABO(3) perovskites and relevant to many physical phenomena, ranging from electronic and magnetic properties, metal-insulator transitions to improper ferroelectricity. Hydrostatic pressure is an efficient way to tune and control octahedral tiltings. However, the pressure behavior of such tiltings can dramatically differ from one material to another, with the origins of such differences remaining controversial. In this paper we discover several new mechanisms and formulate a set of simple rules that allow us to understand how pressure affects oxygen octahedral tiltings via the use and analysis of first-principles results for a variety of compounds. Besides the known A-O interactions, we reveal that the interactions between specific B ions and oxygen ions contribute to the tilting instability. We explain the previously reported trend that the derivative of the oxygen octahedral tilting with respect to pressure (dR/dP) usually decreases with both the tolerance factor and the ionization state of the A ion by illustrating the key role of A-O interactions and their change under pressure. Furthermore, three new mechanisms/rules are discovered, namely that (i) the octahedral rotations in ABO(3) perovskites with empty low-lying d states on the B site are greatly enhanced by pressure, in order to lower the electronic kinetic energy; (ii) dR/dP is enhanced when the system possesses weak tilt instabilities, and (iii) for the most common phase exhibited by perovskites-the orthorhombic Pbnm state-the in-phase and antiphase octahedral rotations are not automatically both suppressed or both enhanced by the application of pressure because of a trilinear coupling between these two rotation types and an antipolar mode involving the A ions. We further predict that the polarization associated with the so-called hybrid improper ferroelectricity could be manipulated by hydrostatic pressure by indirectly controlling the amplitude of octahedral rotations. [less ▲]

Detailed reference viewed: 19 (0 UL)
Full Text
Peer Reviewed
See detailConductivity and Local Structure of LaNiO3 Thin Films
Fowlie, Jennifer; Gibert, Marta; Tieri, Giulio et al

in ADVANCED MATERIALS (2017), 29(18),

A marked conductivity enhancement is reported in 6-11 unit cell LaNiO3 thin films. A maximal conductivity is also observed in ab initio calculations for films of the same thickness. In agreement with ... [more ▼]

A marked conductivity enhancement is reported in 6-11 unit cell LaNiO3 thin films. A maximal conductivity is also observed in ab initio calculations for films of the same thickness. In agreement with results from state of the art scanning transmission electron microscopy, the calculations also reveal a differentiated film structure comprising characteristic surface, interior, and heterointerface structures. Based on this observation, a three-element parallel conductor model is considered and leads to the conclusion that the conductivity enhancement for films of 6-11 unit cells, stems from the onset of intercompetition between the three local structures in the film depth. [less ▲]

Detailed reference viewed: 14 (0 UL)
Full Text
Peer Reviewed
See detailMultiple strain-induced phase transitions in LaNiO3 thin films
Weber, M. C.; Guennou, Mael UL; Dix, N. et al

in PHYSICAL REVIEW B (2016), 94(1),

Strain effects on epitaxial thin films of LaNiO3 grown on different single crystalline substrates are studied by Raman scattering and first-principles simulation. New Raman modes, not present in bulk or ... [more ▼]

Strain effects on epitaxial thin films of LaNiO3 grown on different single crystalline substrates are studied by Raman scattering and first-principles simulation. New Raman modes, not present in bulk or fully relaxed films, appear under both compressive and tensile strains indicating symmetry reductions. Interestingly, the Raman spectra and the underlying crystal symmetry for tensile and compressively strained films are different. Extensive mapping of LaNiO3 phase stability is addressed by simulations, showing that a variety of crystalline phases are indeed stabilized under strain. The calculated Raman frequencies reproduce the principal features of the experimental spectra, supporting the validity of the multiple strain-driven structural transitions predicted by the simulations. [less ▲]

Detailed reference viewed: 10 (0 UL)