References of "Hillje, Anna-Lena 50001987"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailTRIM32 modulates pluripotency entry and exit by directly regulating Oct4 stability
Bahnassawy, Lamia’a; Perumal, Thanneer; Gonzalez Cano, Laura UL et al

in Scientific Reports (2015)

Detailed reference viewed: 177 (10 UL)
Full Text
Peer Reviewed
See detailThe neural stem cell fate determinant TRIM32 regulates complex behavioral traits
Hillje, Anna-Lena UL; Beckmann, Elisabeth; Pavlou, Maria Angeliki UL et al

in Frontiers in Cellular Neuroscience (2015)

Detailed reference viewed: 183 (21 UL)
Full Text
Peer Reviewed
See detailTRIM32-dependent transcription in adult neural progenitor cells regulates neuronal differentiation
Hillje, Anna-Lena UL; Pavlou, Maria Angeliki UL; Beckmann, Elisabeth et al

in Cell Death & Disease (2013)

Detailed reference viewed: 152 (9 UL)
Full Text
Peer Reviewed
See detailRegulatory feedback loop between TP73 and TRIM32.
Gonzalez-Cano, L.; Hillje, Anna-Lena UL; Fuertes-Alvarez, S. et al

in Cell Death & Disease (2013), 4

The p73 transcription factor is one of the members of the p53 family of tumor suppressors with unique biological functions in processes like neurogenesis, embryonic development and differentiation. For ... [more ▼]

The p73 transcription factor is one of the members of the p53 family of tumor suppressors with unique biological functions in processes like neurogenesis, embryonic development and differentiation. For this reason, p73 activity is tightly regulated by multiple mechanisms, including transcription and post-translational modifications. Here, we identified a novel regulatory loop between TAp73 and the E3 ubiquitin ligase tripartite motif protein 32 (TRIM32). TRIM32, a new direct p73 transcriptional target in the context of neural progenitor cells, is differentially regulated by p73. Although TAp73 binds to the TRIM32 promoter and activates its expression, TAp73-induced TRIM32 expression is efficiently repressed by DNp73. TRIM32 in turn physically interacts with TAp73 and promotes its ubiquitination and degradation, impairing p73-dependent transcriptional activity. This mutual regulation between p73 and TRIM32 constitutes a novel feedback loop, which might have important implications in central nervous system development as well as relevance in oncogenesis, and thus emerges as a possible therapeutic target. [less ▲]

Detailed reference viewed: 209 (10 UL)