References of "Heuschling, Paul 50001979"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailAlpha-Synuclein Proteins Promote Pro-Inflammatory Cascades in Microglia: Stronger Effects of the A53T Mutant.
Hoenen, Claire; Gustin, Audrey; Birck, Cindy et al

in PLoS ONE (2016)

Parkinson’s disease (PD) is histologically described by the deposition of α-synuclein, whose accumulation in Lewy bodies causes dopaminergic neuronal death. Although most of PD cases are sporadic, point ... [more ▼]

Parkinson’s disease (PD) is histologically described by the deposition of α-synuclein, whose accumulation in Lewy bodies causes dopaminergic neuronal death. Although most of PD cases are sporadic, point mutations of the gene encoding the α-synuclein protein cause inherited forms of PD. There are currently six known point mutations that result in familial PD. Oxidative stress and neuroinflammation have also been described as early events associated with dopaminergic neuronal degeneration in PD. Though it is known that microglia are activated by wild-type α-synuclein, little is known about its mutated forms and the signaling cascades responsible for this microglial activation. The present study was designed to investigate consequences of wild-type and mutant α-synuclein (A53T, A30P and E46K) exposure on microglial reactivity. Interestingly, we described that α-synuclein-induced microglial reactivity appeared to be peptide-dependent. Indeed, the A53T protein activated more strongly microglia than the wild-type α-synuclein and other mutants. This A53T-induced microglial reactivity mechanism was found to depend on phosphorylation mechanisms mediated by MAPKs and on successive NFkB/AP-1/Nrf2 pathways activation. These results suggest that the microgliosis intensity during PD might depend on the type of α-synuclein protein implicated. Indeed, mutated forms are more potent microglial stimulators than wild-type α-synuclein. Based on these data, anti-inflammatory and antioxidant therapeutic strategies may be valid in order to reduce microgliosis but also to subsequently slow down PD progression, especially in familial cases. [less ▲]

Detailed reference viewed: 55 (3 UL)
Full Text
Peer Reviewed
See detailTranscriptomic analyses of primary astrocytes under TNFα treatment
Birck, Cindy UL; Koncina, Eric UL; Heurtaux, Tony UL et al

in Genomics Data (2015), 7

Astrocytes, the most abundant glial cell population in the central nervous system, have important functional roles in the brain as blood brain barrier maintenance, synaptic transmission or intercellular ... [more ▼]

Astrocytes, the most abundant glial cell population in the central nervous system, have important functional roles in the brain as blood brain barrier maintenance, synaptic transmission or intercellular communications. Numerous studies suggested that astrocytes exhibit a functional and morphological high degree of plasticity. For example, following any brain injury, astrocytes become reactive and hypertrophic. This phenomenon, also called reactive gliosis, is characterized by a set of progressive gene expression and cellular changes. Interestingly, in this context, astrocytes can re-acquire neurogenic properties. It has been shown that astrocytes can undergo dedifferentiation upon injury and inflammation, and may re-acquire the potentiality of neural progenitors. To assess the effect of inflammation on astrocytes, primary mouse astrocytes were treated with tumor necrosis factor α (TNFα), one of the main pro-inflammatory cytokines. The strength of this study is that pure primary astrocytes were used. As microglia are highly reactive immune cells, we used a magnetic cell sorting separation (MACS) method to further obtain highly pure astrocyte cultures devoid of microglia. Here, we provide details of the microarray data, which have been deposited in the Gene Expression Omnibus (GEO) under the series accession number GSE73022. The analysis and interpretation of these data are included in Gabel et al. (2015). Analysis of gene expression indicated that the NFκB pathway-associated genes were induced after a TNFα treatment. We have shown that primary astrocytes devoid of microglia can respond to a TNFα treatment with the re-expression of genes implicated in the glial cell development. [less ▲]

Detailed reference viewed: 248 (37 UL)
Full Text
Peer Reviewed
See detailInflammation Promotes a Conversion of Astrocytes into Neural Progenitor Cells via NF-κB Activation
Gabel, Sebastien; Koncina, Eric UL; Dorban, Gauthier et al

in Molecular Neurobiology (2015), 53(8), 5041-5055

Brain inflammation, a common feature in neurodegenerative diseases, is a complex series of events, which can be detrimental and even lead to neuronal death. Nonetheless, several studies suggest that ... [more ▼]

Brain inflammation, a common feature in neurodegenerative diseases, is a complex series of events, which can be detrimental and even lead to neuronal death. Nonetheless, several studies suggest that inflammatory signals are also positively influencing neural cell proliferation, survival, migration, and differentiation. Recently, correlative studies suggested that astrocytes are able to dedifferentiate upon injury and may thereby re-acquire neural stem cell (NSC) potential. However, the mechanism underlying this dedifferentiation process upon injury remains unclear. Here, we report that during the early response of reactive gliosis, inflammation induces a conversion of mature astrocytes into neural progenitors. A TNF treatment induces the decrease of specific astrocyte markers, such as glial fibrillary acidic protein (GFAP) or genes related to glycogen metabolism, while a subset of these cells re-expresses immaturity markers, such as CD44, Musashi-1, and Oct4. Thus, TNF treatment results in the appearance of cells that exhibit a neural progenitor phenotype and are able to proliferate and differentiate into neurons and/or astrocytes. This dedifferentiation process is maintained as long as TNF is present in the culture medium. In addition, we highlight a role for Oct4 in this process, since the TNF-induced dedifferentiation can be prevented by inhibiting Oct4 expression. Our results show that activation of the NF-κB pathway through TNF plays an important role in the dedifferentiation of astrocytes via the re-expression of Oct4. These findings indicate that the first step of reactive gliosis is in fact a dedifferentiation process of resident astrocytes mediated by the NF-κB pathway. [less ▲]

Detailed reference viewed: 192 (28 UL)
Full Text
Peer Reviewed
See detailNLRP3 Inflammasome Is Expressed and Functional in Mouse Brain Microglia but Not in Astrocytes.
Gustin, Audrey; Kirchmeyer, Mélanie UL; Koncina, Eric UL et al

in PLoS ONE (2015), 10(6),

Neuroinflammation is the local reaction of the brain to infection, trauma, toxic molecules or protein aggregates. The brain resident macrophages, microglia, are able to trigger an appropriate response ... [more ▼]

Neuroinflammation is the local reaction of the brain to infection, trauma, toxic molecules or protein aggregates. The brain resident macrophages, microglia, are able to trigger an appropriate response involving secretion of cytokines and chemokines, resulting in the activation of astrocytes and recruitment of peripheral immune cells. IL-1β plays an important role in this response; yet its production and mode of action in the brain are not fully understood and its precise implication in neurodegenerative diseases needs further characterization. Our results indicate that the capacity to form a functional NLRP3 inflammasome and secretion of IL-1β is limited to the microglial compartment in the mouse brain. We were not able to observe IL-1β secretion from astrocytes, nor do they express all NLRP3 inflammasome components. Microglia were able to produce IL-1β in response to different classical inflammasome activators, such as ATP, Nigericin or Alum. Similarly, microglia secreted IL-18 and IL-1α, two other inflammasome-linked pro-inflammatory factors. Cell stimulation with α-synuclein, a neurodegenerative disease-related peptide, did not result in the release of active IL-1β by microglia, despite a weak pro-inflammatory effect. Amyloid-β peptides were able to activate the NLRP3 inflammasome in microglia and IL-1β secretion occurred in a P2X7 receptor-independent manner. Thus microglia-dependent inflammasome activation can play an important role in the brain and especially in neuroinflammatory conditions. [less ▲]

Detailed reference viewed: 78 (14 UL)
Full Text
Peer Reviewed
See detailAn efficient method to limit microglia-dependent effects in astroglial cultures.
Losciuto, Sophie; Dorban, Gauthier; Gabel, Sébastien et al

in Journal of Neuroscience Methods (2012), 207(1), 59-71

Detailed reference viewed: 39 (3 UL)
Full Text
Peer Reviewed
See detailMicroglial activation depends on beta-amyloid conformation: role of the formylpeptide receptor 2
Heurtaux, Tony UL; Michelucci, Alessandro UL; Losciuto, Sophie UL et al

in Journal of Neurochemistry (2010), 114(2), 576-586

Alzheimer's disease (AD) is characterized by the presence of extracellular deposits referred to beta-amyloid (Abeta) complexes or senile plaques. Abeta peptide is firstly produced as monomers, readily ... [more ▼]

Alzheimer's disease (AD) is characterized by the presence of extracellular deposits referred to beta-amyloid (Abeta) complexes or senile plaques. Abeta peptide is firstly produced as monomers, readily aggregating to form multimeric complexes, of which the smallest aggregates are known to be the most neurotoxic. In AD patients, abundant reactive microglia migrate to and surround the Abeta plaques. Though it is well known that microglia are activated by Abeta, little is known about the peptide conformation and the signaling cascades responsible for this activation. In this study, we have stimulated murine microglia with different Abeta(1-42) forms, inducing an inflammatory state, which was peptide conformation-dependent. The lightest oligomeric forms induced a more violent inflammatory response, whereas the heaviest oligomers and the fibrillar conformation were less potent inducers. BocMLF, a formylpeptide chemotactic receptor 2 antagonist, decreased the oligomeric Abeta-induced inflammatory response. The Abeta-induced signal transduction was found to depend on phosphorylation mechanisms mediated by MAPKs and on activator protein 1/nuclear factor kappa-light-chain-enhancer of activated B cells pathways activation. These results suggest that the reactive microgliosis intensity during AD might depend on the disease progression and consequently on the Abeta conformation production. The recognition of Abeta by the formylpeptide chemotactic receptor 2 seems to be a starting point of the signaling cascade inducing an inflammatory state. [less ▲]

Detailed reference viewed: 145 (39 UL)
Full Text
Peer Reviewed
See detailCharacterization of the microglial phenotype under specific pro-inflammatory and anti-inflammatory conditions: Effects of oligomeric and fibrillar amyloid-beta
Michelucci, Alessandro UL; Heurtaux, Tony UL; Grandbarbe, Luc UL et al

in Journal of Neuroimmunology (2009), 210(1-2), 3-12

M1 and M2 are the extremes of the differentiation spectrum of activated macrophages. Since microglia are members of the same cell lineage, we have characterized their transcription profile and their ... [more ▼]

M1 and M2 are the extremes of the differentiation spectrum of activated macrophages. Since microglia are members of the same cell lineage, we have characterized their transcription profile and their phagocytic activity under different conditions. LPS or IFN-gamma induce a M1-like phenotype, while IL-10 or IL-4 differentiate microglia towards a M2-deactivated or M2-alternatively-activated phenotype respectively. These differentiation processes also affect the Notch pathway. In order to study the polarization induced by Abeta, microglia was stimulated with different forms of the peptide. The oligomeric Abeta is a stronger M1-inductor than the fibrillar form. Moreover, a cytokine-induced anti-inflammatory environment reduces the microglial reactivity towards oligomeric Abeta. [less ▲]

Detailed reference viewed: 34 (3 UL)
Full Text
Peer Reviewed
See detailNotch signaling modulates the activation of microglial cells
Grandbarbe, Luc UL; Michelucci, Alessandro UL; Heurtaux, Tony UL et al

in Glia (2007), 55(15), 1519-30

The Notch signaling pathway plays a crucial role in specifying cellular fate in metazoan development by regulating communication between adjacent cells. Correlative studies suggested an involvement of ... [more ▼]

The Notch signaling pathway plays a crucial role in specifying cellular fate in metazoan development by regulating communication between adjacent cells. Correlative studies suggested an involvement of Notch in hematopoietic cell development. Here, we report that the Notch pathway is expressed and active in microglial cells. During inflammatory activation, the transcription of the Notch down-stream effector Hes1 is downregulated. When Notch1 transcription in microglia is inhibited, an upregulation of the expression of pro-inflammatory cytokines is observed. Notch stimulation in activated microglia, using a soluble form of its ligand Jagged1, induces a decrease in pro-inflammatory cytokines secretion and nitric oxide production as well as an increase in phagocytic activity. Notch-stimulation is accompanied by an increase in the rate of STAT3 phosphorylation and nuclear translocation. Our results show that the Notch pathway plays an important role in the control of inflammatory reactions in the CNS. [less ▲]

Detailed reference viewed: 83 (5 UL)
Full Text
Peer Reviewed
See detailDual bioactivity of resveratrol fatty alcohols: differentiation of neural stem cells and modulation of neuroinflammation
Hauss, Frederique; Liu, Jiawei; Michelucci, Alessandro UL et al

in Bioorganic & Medicinal Chemistry Letters (2007), 17(15), 4218-4222

The synthesis of resveratrol fatty alcohols (RFAs), a new class of small molecules presenting strong potential for the treatment of neurological diseases, is described. RFAs, hybrid compounds combining ... [more ▼]

The synthesis of resveratrol fatty alcohols (RFAs), a new class of small molecules presenting strong potential for the treatment of neurological diseases, is described. RFAs, hybrid compounds combining the resveratrol nucleus and omega-alkanol side chains, are able to modulate neuroinflammation and to induce differentiation of neural stem cells into mature neurons. Acting on neuroprotection and neuroregeneration, RFAs represent an innovative approach for the treatment or cure of neuropathies. [less ▲]

Detailed reference viewed: 42 (2 UL)
Peer Reviewed
See detailHuman umbilical cord blood-derived eosinophils cultured in the presence of IL-3 and IL-5 respond to fMLP with [Ca2+]i variation and O2- production
Zardini, D. M.; Heuschling, Paul UL; Gallois, A. et al

in Journal of Immunological Methods (1997), 205(1), 1-9

In the presence of interleukin-3 and interleukin-5, eosinophil precursors from human umbilical cord blood mononuclear cells were regularly differentiated into mature eosinophil-like cells expressing ... [more ▼]

In the presence of interleukin-3 and interleukin-5, eosinophil precursors from human umbilical cord blood mononuclear cells were regularly differentiated into mature eosinophil-like cells expressing normal morphology and cyanide-resistant peroxidase. O2- production and [Ca2+]i rise were measured in these in vitro differentiated eosinophils after fMLP stimulation; with dihydrorhodamine-123 and fura-2, respectively. Umbilical cord blood-derived eosinophils responded to fMLP (0.01 nM to 3 microM) with a concentration-dependent production of O2- (EC50 = 63.1 +/- 17.2 nM; Emax = 71.0 +/- 6.2 pmol/min/10(6) cells). O2- production was correlated with an fMLP concentration-dependent increase in [Ca2+]i (EC50 = 32.5 +/- 14.9 nM; Emax = 200.0 +/- 23.9 nM). These results indicate that human umbilical cord blood-derived eosinophils demonstrate functional characteristics similar to adult human peripheral blood eosinophils after activation by fMLP. Therefore, the large numbers of eosinophils (2-3 x 10(6)/ml cord blood) which can be obtained by culture of human cord blood mononuclear cells may serve as a useful model for future studies which will provide insight into the pathogenesis of diseases associated with eosinophils. [less ▲]

Detailed reference viewed: 79 (1 UL)