References of "Herold, Malte 50001974"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailDeep neural networks outperform human expert's capacity in characterizing bioleaching bacterial biofilm composition
Buetti-Dinh, Antoine; Galli, Vanni; Bellenberg, Sören et al

in Biotechnology Reports (2019)

Background Deep neural networks have been successfully applied to diverse fields of computer vision. However, they only outperform human capacities in a few cases. Methods The ability of deep neural ... [more ▼]

Background Deep neural networks have been successfully applied to diverse fields of computer vision. However, they only outperform human capacities in a few cases. Methods The ability of deep neural networks versus human experts to classify microscopy images was tested on biofilm colonization patterns formed on sulfide minerals composed of up to three different bioleaching bacterial species attached to chalcopyrite sample particles. Results A low number of microscopy images per category (<600) was sufficient for highly efficient computational analysis of the biofilm's bacterial composition. The use of deep neural networks reached an accuracy of classification of ∼90% compared to ∼50% for human experts. Conclusions Deep neural networks outperform human experts’ capacity in characterizing bacterial biofilm composition involved in the degradation of chalcopyrite. This approach provides an alternative to standard, time-consuming biochemical methods. [less ▲]

Detailed reference viewed: 15 (3 UL)
Full Text
See detailIntegration of omics data for biotechnology-relevant microbial communities
Herold, Malte UL

Doctoral thesis (2018)

Naturally occurring and artificial bacterial communities play an import role in many biotechnological processes. To elucidate bacterial interactions that are important for potential optimized ... [more ▼]

Naturally occurring and artificial bacterial communities play an import role in many biotechnological processes. To elucidate bacterial interactions that are important for potential optimized biotechnological applications, high-throughput measurements of biomolecules, metagenomics, metratranscriptomics,metaproteomics, and meta-metabolomics provide a detailed snapshot of mixed microbial consortia. Integration of multiple layers of omics data allows to reconstruct structure and function of complex microbial communities and is demonstrated for two different model systems. The first chapter focuses on synthetic communities consisting of strains representing key species found in biomining operations and acid mine drainage and that are of economical interest for copper production. A high-quality closed reference genome for L. ferriphilum was obtained by DNA sequencing and was subsequently used to integrate functional omics data, i.e. transcriptomic and proteomic profiling. The combination of genomics, genome annotation, and functional omics data allowed an in-depth characterization of L. ferriphilum in culture medium and in the presence of the iron sulfide mineral chalcopyrite, an economically relevant copper ore. Subsequently, analyses were performed for co-cultures of up to three organisms highlighting specific interaction mechanisms. The cultures without L. ferriphilum showed higher copper solubilisation rates, as the highly efficient iron oxidiser might raise the redox potential above the optimal range. For in situ studies, reference-based analyses are of limited use, e.g. due to a lack in reference genomes of culturable isolates. Hence, the second chapter focuses on an approach to study mixed microbial communities independent of prior knowledge and available reference genomes. A timeseries of oleaginous floating sludge samples that spans over one and a half years was analysed by integrating metagenomic, metatranscriptomic, metaproteomic, and meta-metabolomic data. This allowed the reconstruction of population level genomes and the characterization of the niches of the respective populations. The functional potential was assessed, as well as expression profiles over time, yielding a detailed view on lifestyle strategies and the potential impact of abiotic factors. Understanding the niche ecology of the predominant lipid accumulators in the system could lead towards optimized biofuel production. [less ▲]

Detailed reference viewed: 105 (17 UL)
Full Text
See detailIntegrated time-resolved multi-omics for understanding microbial niche ecology
Herold, Malte UL; Narayanasamy, Shaman UL; Martinez Arbas, Susana UL et al

Poster (2018, August)

Microbial communities are strongly shaped by the niche breadths of their constituent populations. However, a detailed understanding of microbial niche ecology is typically lacking. Integrated multi-omic ... [more ▼]

Microbial communities are strongly shaped by the niche breadths of their constituent populations. However, a detailed understanding of microbial niche ecology is typically lacking. Integrated multi-omic analyses of host- or environment-derived samples offer the prospect of resolving fundamental and realised niches in situ. In turn, this is considered a prerequisite for niche engineering in order to drive an individual population or a community towards a specific phenotype, e.g., improvement of a biotechnological process. Here, we sampled floating islets on the surface of an activated sludge tank in a time-series spanning 51 time-points over 14 months. Multi-omics datasets (metagenomics, metatranscriptomics, metaproteomics, and (meta-)metabolomics) were generated for all time-points. Leveraging nucleotide sequencing data, we analyzed the community structure and reconstructed genomes for specific populations of interest. Moreover, based on their metabolic potential, three major groups emerged, serving as proxies for their respective fundamental niches . Time-resolved linkage of the proteomic and transcriptomic data to the reconstructed genomes revealed a fine-grained picture of niche realization. In particular, environmental factors (temperature, metabolites, oxygen) were significantly associated with gene expression of individual populations. Furthermore, we subjected the community to controlled oxygen conditions (stable or dynamic) in a bioreactor experiment and measured the transcriptomic response. Our results suggest short-term adaptations of populations of interest with respect to lipid metabolism, among other pathways. In conclusion, our work demonstrates how longitudinal multi-omic datasets can be integrated in order to further our understanding of microbial niche ecology within a biotechnological process with potential applications beyond waste water treatment. [less ▲]

Detailed reference viewed: 105 (8 UL)
Full Text
Peer Reviewed
See detailAutomated Microscopic Analysis of Metal Sulfide Colonization by Acidophilic Microorganisms.
Bellenberg, Soren; Buetti-Dinh, Antoine; Galli, Vanni et al

in Applied and environmental microbiology (2018), 84(20),

Industrial biomining processes are currently focused on metal sulfides and their dissolution, which is catalyzed by acidophilic iron(II)- and/or sulfur-oxidizing microorganisms. Cell attachment on metal ... [more ▼]

Industrial biomining processes are currently focused on metal sulfides and their dissolution, which is catalyzed by acidophilic iron(II)- and/or sulfur-oxidizing microorganisms. Cell attachment on metal sulfides is important for this process. Biofilm formation is necessary for seeding and persistence of the active microbial community in industrial biomining heaps and tank reactors, and it enhances metal release. In this study, we used a method for direct quantification of the mineral-attached cell population on pyrite or chalcopyrite particles in bioleaching experiments by coupling high-throughput, automated epifluorescence microscopy imaging of mineral particles with algorithms for image analysis and cell quantification, thus avoiding human bias in cell counting. The method was validated by quantifying cell attachment on pyrite and chalcopyrite surfaces with axenic cultures of Acidithiobacillus caldus, Leptospirillum ferriphilum, and Sulfobacillus thermosulfidooxidans. The method confirmed the high affinity of L. ferriphilum cells to colonize pyrite and chalcopyrite surfaces and indicated that biofilm dispersal occurs in mature pyrite batch cultures of this species. Deep neural networks were also applied to analyze biofilms of different microbial consortia. Recent analysis of the L. ferriphilum genome revealed the presence of a diffusible soluble factor (DSF) family quorum sensing system. The respective signal compounds are known as biofilm dispersal agents. Biofilm dispersal was confirmed to occur in batch cultures of L. ferriphilum and S. thermosulfidooxidans upon the addition of DSF family signal compounds.IMPORTANCE The presented method for the assessment of mineral colonization allows accurate relative comparisons of the microbial colonization of metal sulfide concentrate particles in a time-resolved manner. Quantitative assessment of the mineral colonization development is important for the compilation of improved mathematical models for metal sulfide dissolution. In addition, deep-learning algorithms proved that axenic or mixed cultures of the three species exhibited characteristic biofilm patterns and predicted the biofilm species composition. The method may be extended to the assessment of microbial colonization on other solid particles and may serve in the optimization of bioleaching processes in laboratory scale experiments with industrially relevant metal sulfide concentrates. Furthermore, the method was used to demonstrate that DSF quorum sensing signals directly influence colonization and dissolution of metal sulfides by mineral-oxidizing bacteria, such as L. ferriphilum and S. thermosulfidooxidans. [less ▲]

Detailed reference viewed: 18 (4 UL)
Full Text
Peer Reviewed
See detailWeak Iron Oxidation by Sulfobacillus thermosulfidooxidans Maintains a Favorable Redox Potential for Chalcopyrite Bioleaching
Christel, Stephan; Herold, Malte UL; Bellenberg, Sören et al

in Frontiers in Microbiology (2018), 9(December), 1-12

Bioleaching is an emerging technology, describing the microbially assisted dissolution of sulfidic ores that provides a more environmentally friendly alternative to many traditional metal extraction ... [more ▼]

Bioleaching is an emerging technology, describing the microbially assisted dissolution of sulfidic ores that provides a more environmentally friendly alternative to many traditional metal extraction methods, such as roasting or smelting. Industrial interest is steadily increasing and today, circa 15–20% of the world’s copper production can be traced back to this method. However, bioleaching of the world’s most abundant copper mineral chalcopyrite suffers from low dissolution rates, often attributed to passivating layers, which need to be overcome to use this technology to its full potential. To prevent these passivating layers from forming, leaching needs to occur at a low oxidation/reduction potential (ORP), but chemical redox control in bioleaching heaps is difficult and costly. As an alternative, selected weak iron-oxidizers could be employed that are incapable of scavenging exceedingly low concentrations of iron and therefore, raise the ORP just above the onset of bioleaching, but not high enough to allow for the occurrence of passivation. In this study, we report that microbial iron oxidation by Sulfobacillus thermosulfidooxidans meets these specifications. Chalcopyrite concentrate bioleaching experiments with S. thermosulfidooxidans as the sole iron oxidizer exhibited significantly lower redox potentials and higher release of copper compared to communities containing the strong iron oxidizer Leptospirillum ferriphilum. Transcriptomic response to single and co-culture of these two iron oxidizers was studied and revealed a greatly decreased number of mRNA transcripts ascribed to iron oxidation in S. thermosulfidooxidans when cultured in the presence of L. ferriphilum. This allowed for the identification of genes potentially responsible for S. thermosulfidooxidans’ weaker iron oxidation to be studied in the future, as well as underlined the need for new mechanisms to control the microbial population in bioleaching heaps. [less ▲]

Detailed reference viewed: 30 (1 UL)
Full Text
Peer Reviewed
See detailUsing metabolic networks to resolve ecological properties of microbiomes
Muller, Emilie UL; Faust, Karoline; Widder, Stefanie et al

in Current Opinion in Systems Biology (2018)

Detailed reference viewed: 42 (4 UL)
Full Text
Peer Reviewed
See detailFirst draft genome sequence of a strain belonging to the Zoogloea genus and its gene expression in situ
Muller, Emilie UL; Narayanasamy, Shaman UL; Zeimes, Myriam et al

in Standards in Genomic Sciences (2017), 12(64),

The Gram-negative beta-proteobacterium Zoogloea sp. LCSB751 (LMG 29444) was newly isolated from foaming activated sludge of a municipal wastewater treatment plant. Here, we describe its draft genome ... [more ▼]

The Gram-negative beta-proteobacterium Zoogloea sp. LCSB751 (LMG 29444) was newly isolated from foaming activated sludge of a municipal wastewater treatment plant. Here, we describe its draft genome sequence and annotation together with a general physiological and genomic analysis, as the first sequenced representative of the Zoogloea genus. Moreover, Zoogloea sp. gene expression in its environment is described using metatranscriptomic data obtained from the same treatment plant. The presented genomic and transcriptomic information demonstrate a pronounced capacity of this genus to synthesize poly-β-hydroxyalkanoate within wastewater. [less ▲]

Detailed reference viewed: 104 (9 UL)
Full Text
Peer Reviewed
See detailMulti-omics reveal the lifestyle of the acidophilic, mineral-oxidizing model species Leptospirillum ferriphilum(T).
Christel, Stephan; Herold, Malte UL; Bellenberg, Soren et al

in Applied and environmental microbiology (2017)

Leptospirillum ferriphilum plays a major role in acidic, metal rich environments where it represents one of the most prevalent iron oxidizers. These milieus include acid rock and mine drainage as well as ... [more ▼]

Leptospirillum ferriphilum plays a major role in acidic, metal rich environments where it represents one of the most prevalent iron oxidizers. These milieus include acid rock and mine drainage as well as biomining operations. Despite its perceived importance, no complete genome sequence of this model species' type strain is available, limiting the possibilities to investigate the strategies and adaptations Leptospirillum ferriphilum(T) applies to survive and compete in its niche. This study presents a complete, circular genome of Leptospirillum ferriphilum(T) DSM 14647 obtained by PacBio SMRT long read sequencing for use as a high quality reference. Analysis of the functionally annotated genome, mRNA transcripts, and protein concentrations revealed a previously undiscovered nitrogenase cluster for atmospheric nitrogen fixation and elucidated metabolic systems taking part in energy conservation, carbon fixation, pH homeostasis, heavy metal tolerance, oxidative stress response, chemotaxis and motility, quorum sensing, and biofilm formation. Additionally, mRNA transcript counts and protein concentrations were compared between cells grown in continuous culture using ferrous iron as substrate and bioleaching cultures containing chalcopyrite (CuFeS2). Leptospirillum ferriphilum(T) adaptations to growth on chalcopyrite included a possibly enhanced production of reducing power, reduced carbon dioxide fixation, as well as elevated RNA transcripts and proteins involved in heavy metal resistance, with special emphasis on copper efflux systems. Finally, expression and translation of genes responsible for chemotaxis and motility were enhanced.IMPORTANCELeptospirillum ferriphilum is one of the most important iron-oxidizers in the context of acidic and metal rich environments during moderately thermophilic biomining. A high-quality circular genome of Leptospirillum ferriphilum(T) coupled with functional omics data provides new insights into its metabolic properties, such as the novel identification of genes for atmospheric nitrogen fixation, and represents an essential step for further accurate proteomic and transcriptomic investigation of this acidophile model species in the future. Additionally, light is shed on Leptospirillum ferriphilum(T) adaptation strategies to growth on the copper mineral chalcopyrite. This data can be applied to deepen our understanding and optimization of bioleaching and biooxidation, techniques that present sustainable and environmentally friendly alternatives to many traditional methods for metal extraction. [less ▲]

Detailed reference viewed: 38 (1 UL)
Full Text
Peer Reviewed
See detailIMP: a pipeline for reproducible referenceindependent integrated metagenomic and metatranscriptomic analyses
Narayanasamy, Shaman UL; Jarosz, Yohan UL; Muller, Emilie UL et al

in Genome Biology (2016), 17

Existing workflows for the analysis of multi-omic microbiome datasets are lab-specific and often result in sub-optimal data usage. Here we present IMP, a reproducible and modular pipeline for the ... [more ▼]

Existing workflows for the analysis of multi-omic microbiome datasets are lab-specific and often result in sub-optimal data usage. Here we present IMP, a reproducible and modular pipeline for the integrated and reference-independent analysis of coupled metagenomic and metatranscriptomic data. IMP incorporates robust read preprocessing, iterative co-assembly, analyses of microbial community structure and function, automated binning, as well as genomic signature-based visualizations. The IMP-based data integration strategy enhances data usage, output volume, and output quality as demonstrated using relevant use-cases. Finally, IMP is encapsulated within a user-friendly implementation using Python and Docker. IMP is available at http://r3lab.uni.lu/web/imp/ (MIT license). [less ▲]

Detailed reference viewed: 221 (20 UL)
Full Text
Peer Reviewed
See detailIdentification, recovery, and refinement of hitherto undescribed population-level genomes from the human gastrointestinal tract
Laczny, Cedric C.; Muller, Emilie UL; Heintz-Buschart, Anna UL et al

in Frontiers in Microbiology (2016), 7(884),

Linking taxonomic identity and functional potential at the population-level is important for the study of mixed microbial communities and is greatly facilitated by the availability of microbial reference ... [more ▼]

Linking taxonomic identity and functional potential at the population-level is important for the study of mixed microbial communities and is greatly facilitated by the availability of microbial reference genomes. While the culture-independent recovery of population-level genomes from environmental samples using the binning of metagenomic data has expanded available reference genome catalogs, several microbial lineages remain underrepresented. Here, we present two reference-independent approaches for the identification, recovery, and refinement of hitherto undescribed population-level genomes. The first approach is aimed at genome recovery of varied taxa and involves multi-sample automated binning using CANOPY CLUSTERING complemented by visualization and human-augmented binning using VIZBINpost hoc. The second approach is particularly well-suited for the study of specific taxa and employs VIZBINde novo. Using these approaches, we reconstructed a total of six population-level genomes of distinct and divergent representatives of the Alphaproteobacteria class, the Mollicutes class, the Clostridiales order, and the Melainabacteria class from human gastrointestinal tract-derived metagenomic data. Our results demonstrate that, while automated binning approaches provide great potential for large-scale studies of mixed microbial communities, these approaches should be complemented with informative visualizations because expert-driven inspection and refinements are critical for the recovery of high-quality population-level genomes. [less ▲]

Detailed reference viewed: 151 (8 UL)
Full Text
Peer Reviewed
See detailSystems Biology of Acidophile Biofilms for Efficient Metal Extraction
Christel, Stephan; Dopson, Mark; Vera, Mario et al

in Advanced Materials Research (2015), 1130

This European Union ERASysApp funded study will investigate one of the major drawbacks of bioleaching of the copper containing mineral chalcopyrite, namely the long lag phase between construction and ... [more ▼]

This European Union ERASysApp funded study will investigate one of the major drawbacks of bioleaching of the copper containing mineral chalcopyrite, namely the long lag phase between construction and inoculation of bioleaching heaps and the release of dissolved metals. In practice, this lag phase can be up to three years and the long time period adds to the operating expenses of bioheaps for chalcopyrite dissolution. One of the major time determining factors in bioleaching heaps is suggested to be the speed of mineral colonization by the acidophilic microorganisms present. By applying confocal microscopy, metatranscriptomics, metaproteomics, bioinformatics, and computer modeling the authors aim to investigate the processes leading up to, and influencing the attachment of three moderately thermophilic sulfur-and/or iron-oxidizing model species: Acidithiobacillus caldus, Leptospirillum ferriphilum, and Sulfobacillus thermosulfidooxidans. Stirred tank reactors containing chalcopyrite concentrate will be inoculated with these species in various orders and proportions and the effects on the lag phase and rates of metal release will be compared. Meanwhile, confocal microscopy studies of cell attachment to chalcopyrite mineral particles, as well as metatranscriptomics and metaproteomics of the formed biofilms will further increase understanding of the attachment process and help develop a model thereof. By fulfilling our goal to decrease the length of the lag phase of chalcopyrite bioleaching heaps we hope to increase their economic feasibility and therefore, industrial interest in bioleaching as a sustainable technology. [less ▲]

Detailed reference viewed: 30 (3 UL)