References of "Heinrich, Peter C"
     in
Bookmark and Share    
See detailKapitel 35: Rezeptoren und ihre Signaltransduktion
Heinrich, Peter C.; Haan, Serge UL; Hermanns, Heike M. et al

in Heinrich, Peter C.; Müller, Matthias; Graeve, Lutz (Eds.) Biochemie und Pathobiochemie (2014)

Detailed reference viewed: 75 (2 UL)
See detailKapitel 34: Mediatoren
Heinrich, Peter C.; Haan, Serge UL; Hermanns, Heike M. et al

in Heinrich, Peter C.; Müller, Matthias; Graeve, Lutz (Eds.) Biochemie und Pathobiochemie (2014)

Detailed reference viewed: 130 (4 UL)
Full Text
Peer Reviewed
See detailAn unusual insertion in Jak2 is crucial for kinase activity and differentially affects cytokine responses
Haan, Claude UL; Kroy, Daniela C.; Wüller, Stefan et al

in Journal of Immunology (2009), 182(5), 2969-2977

The Janus kinases, Jaks, constitutively associate with the cytoplasmic region of cytokine receptors and play an important role in a multitude of biological processes. Jak2 dysfunction has been implicated ... [more ▼]

The Janus kinases, Jaks, constitutively associate with the cytoplasmic region of cytokine receptors and play an important role in a multitude of biological processes. Jak2 dysfunction has been implicated in myeloproliferative diseases and leukemia. Although Jaks were studied extensively for many years, the molecular mechanism of Jak activation upon cytokine stimulation of cells is still incompletely understood. In this study, we investigated the importance of an unusual insertion located within the kinase domain in Jak2. We found that the deletion of this insertion, which we named the Jak-specific insertion (JSI), totally abrogates Jak2 autophosphorylation. We further point mutated four residues within the JSI that are conserved in all Jak family members. Three of these mutants showed abrogated or reduced autophosphorylation, whereas the fourth displayed increased autophosphorylation. We found that the phosphorylation state of these mutants is not influenced by other domains of the kinase. Our data further suggest that the JSI is not required for the negative regulation of kinase activity by the suppressor of cytokine signaling proteins, SOCS. Most importantly, we show that mutations in this region differentially affect IFN-gamma and erythropoietin signal transduction. Taken together, the dramatic effects on the phosphorylation status of Jak2 as well as the differential effects on the signaling via different cytokines highlight the importance of this unusual region for the catalytic activity of Jaks. [less ▲]

Detailed reference viewed: 72 (4 UL)
Full Text
Peer Reviewed
See detailDevelopment of an IL-6 inhibitor based on the functional analysis of murine IL-6Ralpha(1).
Wiesinger, Monique UL; Haan, Serge UL; Wuller, Stefan et al

in Chemistry & Biology (2009), 16(7), 783-94

Dysregulated cytokine production contributes to inflammatory and proliferative diseases. Therefore, inhibition of proinflammatory mediators such as TNF, IL-1, and IL-6 is of great clinical relevance ... [more ▼]

Dysregulated cytokine production contributes to inflammatory and proliferative diseases. Therefore, inhibition of proinflammatory mediators such as TNF, IL-1, and IL-6 is of great clinical relevance. Actual strategies are aimed at preventing receptor activation through sequestration of the ligand. Here we describe the development of an inhibitor of murine IL-6 based on fused receptor fragments. Molecular modeling-guided analysis of the murine IL-6Ralpha revealed that mutations in the Ig-like domain D1 severely affect protein function, although D1 is not directly involved in the ligand-binding interface. The resulting single chain IL-6 inhibitor (mIL-6-RFP) consisting of domains D1-D3 of mgp130, a flexible linker, and domains D1-D3 of mIL-6Ralpha is a highly potent and specific IL-6 inhibitor. mIL-6-RFP will permit further characterization of the role of IL-6 in various disease models and could ultimately lead to anti-IL-6 therapy. [less ▲]

Detailed reference viewed: 48 (3 UL)
Full Text
Peer Reviewed
See detailOncostatin M-induced and constitutive activation of the JAK2/STAT5/CIS pathway suppresses CCL1, but not CCL7 and CCL8, chemokine expression
Hintzen, Christoph UL; Haan, Claude UL; Tuckermann, Jan P. et al

in Journal of Immunology (2009), 181(10), 7341-7349

The recruitment of leukocytes to injured tissue is crucial for the initiation of inflammatory responses as well as for immune surveillance to fight tumor progression. In this study, we show that ... [more ▼]

The recruitment of leukocytes to injured tissue is crucial for the initiation of inflammatory responses as well as for immune surveillance to fight tumor progression. In this study, we show that oncostatin M, a member of the IL-6-type cytokine family and potent proinflammatory cytokine stimulates the expression of the chemokines CCL1, CCL7, and CCL8 in primary human dermal fibroblasts at a faster kinetic than IL-1beta or TNF-alpha. The production of CCL1 and CCL8 is important for migration of monocytes, while specific Abs against CCL1 additionally inhibit the migration of T lymphocytes. We identify the mitogen-activated protein kinases ERK1/2 and p38 as crucial factors for the enhanced expression of CCL1 and CCL8. Depletion of the ERK1/2 target genes c-Jun or c-Fos strongly decrease CCL1 and CCL8 expression, while p38 MAPK prolongs the half-life of CCL1, CCL7, and CCL8 mRNA through inhibition of tristetraprolin. None of the STAT transcription factors STAT1, STAT3, or STAT5 stimulate transcription of CCL1 or CCL8. However, we identify a negative regulatory function of activated STAT5 for the gene expression of CCL1. Importantly, not STAT5 itself, but its target gene cytokine inducible SH2-domain containing protein is required for the STAT5 inhibitory effect on CCL1 expression. Finally, we show that constitutive activation of STAT5 through a mutated form of JAK2 (JAK2 V617F) occurring in patients with myeloproliferative disorders similarly suppresses CCL1 expression. Taken together, we identify novel important inflammatory target genes of OSM which are independent of STAT signaling per se, but depend on MAPK activation and are partly repressed through STAT5-dependent expression of cytokine inducible SH2-domain containing protein. [less ▲]

Detailed reference viewed: 61 (0 UL)
Full Text
Peer Reviewed
See detailInterleukin-27 displays interferon-gamma-like functions in human hepatoma cells and hepatocytes.
Bender, Herdis; Wiesinger, Monique UL; Nordhoff, Carolin et al

in Hepatology (Baltimore, Md.) (2009), 50(2), 585-91

Interleukin-27 (IL-27) is a cytokine belonging to the IL-6/IL-12 cytokine family. It is secreted by antigen-presenting cells, strongly acts on T cells, and also stimulates innate immune cells. In most ... [more ▼]

Interleukin-27 (IL-27) is a cytokine belonging to the IL-6/IL-12 cytokine family. It is secreted by antigen-presenting cells, strongly acts on T cells, and also stimulates innate immune cells. In most studies, the effects of IL-27 on T cells were investigated; however, not much is known about possible effects of IL-27 on other cell types. IL-27 signals via the common IL-6-type cytokine receptor chain gp130 and the IL-27-specific chain WSX-1. Given the importance of gp130 in regulating liver responses such as the acute phase response or liver regeneration, we investigated whether IL-27 could also have a function in liver cells. We find that IL-27 stimulates hepatoma cells and hepatocytes by inducing a sustained signal transducer and activator of transcription (STAT)1 and STAT3 activation. Whereas the STAT3 mediated responses to IL-27 (gamma-fibrinogen and hepcidin induction) are not detectable, we observe an interferon-gamma (IFN-gamma)-like STAT1 response leading to the induction of interferon-regulated proteins such as STAT1, STAT2, interferon response factor (IRF)-1, IRF-9, myxovirus resistance A and guanylate binding protein 2. CONCLUSION: Our study provides evidence for a function of IL-27 in hepatoma cells and hepatocytes and shows that IL-27 responses are not restricted to the classical immune cells. Our results suggest that IL-27 exerts IFN-like functions in liver cells and that it can contribute to the antiviral response in these cells. [less ▲]

Detailed reference viewed: 40 (6 UL)
Full Text
Peer Reviewed
See detailCell density dependent increase of constitutive signal transducers and activators of transcription 3 activity in melanoma cells is mediated by Janus kinases
Kreis, Stephanie UL; Munz, George. A.; Haan, Serge UL et al

in Molecular Cancer Research (2008), 5(12), 1331-41

Signal transducers and activators of transcriptions (STAT) are key mediators of cytokine signaling. Moreover, these transcription factors play a crucial role in oncogenic signaling where inappropriate and ... [more ▼]

Signal transducers and activators of transcriptions (STAT) are key mediators of cytokine signaling. Moreover, these transcription factors play a crucial role in oncogenic signaling where inappropriate and sustained activation of STATs, especially STAT3, is a trait of many different cancers and their derived cell lines. Constitutively active STAT3 has been reported to prevent programmed cell death and enhance cell proliferation, whereas the disruption of STAT3 signaling can inhibit tumor growth. The physiologic activation of STAT3 by cytokines has been well established; however, little is known about altered, stimulation-independent STAT3 activation. Here, we show that, in most but not all melanoma cell lines, STAT3 phosphorylation increased substantially with cell density and that this STAT3 was able to bind to DNA and to activate transcription. Inhibitor studies showed that the cell density-dependent STAT3 activation relies on Janus kinases (JAK) rather than Src kinases. Using a specific JAK inhibitor, sustained STAT3 activation was completely abrogated in all tested melanoma lines, whereas inhibition of Src or mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1/2 had no effect on constitutively tyrosine-phosphorylated STAT3 levels. Although STAT3 activation was completely blocked with JAK inhibitor I and to a lesser extent with the common JAK inhibitor AG490, only the latter compound markedly decreased proliferation and induced apoptosis. Taken together, variations in cell density can profoundly modify the extent of JAK-mediated persistent STAT3 phosphorylation; however, STAT3 activation was not sufficient to provide critical growth and survival signals in melanoma cell lines. [less ▲]

Detailed reference viewed: 97 (10 UL)
Peer Reviewed
See detailNucleocytoplasmic shuttling of persistently activated STAT3.
Herrmann, Andreas; Vogt, Michael; Monnigmann, Martin et al

in Journal of Cell Science (2007), 120(Pt 18), 3249-61

Persistent activation of the transcription factor STAT3 has been detected in many types of cancer and plays an important role in tumor progression, immune evasion and metastasis. To analyze persistent ... [more ▼]

Persistent activation of the transcription factor STAT3 has been detected in many types of cancer and plays an important role in tumor progression, immune evasion and metastasis. To analyze persistent STAT3 activation we coexpressed STAT3 with v-Src. We found that tyrosine phosphorylation of STAT3 by v-Src is independent of Janus kinases (Jaks), the canonical activators of STATs. The STAT3-induced feedback inhibitor, suppressor of cytokine signaling 3 (SOCS3), did not interfere with STAT3 activation by v-Src. However, the protein inhibitor of activated STAT3 (PIAS3) suppressed gene induction by persistently activated STAT3. We measured nucleocytoplasmic shuttling of STAT3 in single cells by bleaching the YFP moiety of double-labelled STAT3-CFP-YFP in the cytoplasm. Analysis of the subcellular distribution of CFP and YFP fluorescence over time by mathematical modeling and computational parameter estimation revealed that activated STAT3 shuttles more rapidly than non-activated STAT3. Inhibition of exportin-1-mediated nuclear export slowed down nucleocytoplasmic shuttling of v-Src-activated STAT3 resulting in reduced tyrosine phosphorylation, decreased induction of STAT3 target genes and increased apoptosis. We propose passage of persistently activated STAT3 through the nuclear pore complex as a new target for intervention in cancer. [less ▲]

Detailed reference viewed: 63 (1 UL)
Peer Reviewed
See detailCharacterization of the Interleukin (IL)-6 Inhibitor IL-6-RFP: fused receptor domains act as high affinity cytokine-binding proteins.
Metz, Silke; Wiesinger, Monique UL; Vogt, Michael et al

in Journal of Biological Chemistry (2007), 282(2), 1238-48

Although fusion proteins of the extracellular parts of receptor subunits termed cytokine traps turned out to be promising cytokine inhibitors for anti-cytokine therapies, their mode of action has not been ... [more ▼]

Although fusion proteins of the extracellular parts of receptor subunits termed cytokine traps turned out to be promising cytokine inhibitors for anti-cytokine therapies, their mode of action has not been analyzed. We developed a fusion protein consisting of the ligand binding domains of the IL-6 receptor subunits IL-6Ralpha and gp130 that acts as a highly potent IL-6 inhibitor. Gp130 is a shared cytokine receptor also used by the IL-6-related cytokines oncostatin M and leukemia inhibitory factor. In this study, we have shown that the IL-6 receptor fusion protein (IL-6-RFP) is a specific IL-6 inhibitor that does not block oncostatin M or leukemia inhibitory factor. We characterized the complex of IL-6-RFP and fluorescently labeled IL-6 (YFPIL-6) by blue native PAGE and gel filtration. A 2-fold molar excess of IL-6-RFP over IL-6 was sufficient to entirely bind IL-6 in a complex with IL-6-RFP. As shown by treatment with urea and binding competition experiments, the complex of IL-6 and IL-6-RFP is more stable than the complex of IL-6, soluble IL-6Ralpha, and soluble gp130. By live cell imaging, we have demonstrated that YFP-IL-6 bound to the surface of cells expressing gp130-CFP is removed from the plasma membrane upon the addition of IL-6-RFP. The apparent molecular mass of the IL-6.IL-6-RFP complex determined by blue native PAGE and gel filtration suggests that IL-6 is trapped in a structure analogous to the native hexameric IL-6 receptor complex. Thus, fusion of the ligand binding domains of heteromeric receptors leads to highly specific cytokine inhibitors with superior activity compared with the separate soluble receptors. [less ▲]

Detailed reference viewed: 33 (1 UL)
See detailKapitel 25: Kommunikation zwischen Zellen: Extrazelluläre Signalmoleküle, Rezeptoren und Signaltransduktion
Heinrich, Peter C.; Haan, Serge UL; Hermanns, Heike M. et al

in Löffler, Georg; Petrides, P. E.; Heinrich, Peter C. (Eds.) Biochemie und Pathobiochemie (2007)

Detailed reference viewed: 75 (2 UL)
Peer Reviewed
See detailDeterminants governing the potency of STAT3 activation via the individual STAT3-recruiting motifs of gp130.
Lehmann, Ute; Sommer, Ulrike; Smyczek, Tanya et al

in Cellular Signalling (2006), 18(1), 40-9

In recent years, the elucidation of the structures of many signalling molecules has allowed new insights into the molecular mechanisms that govern signal transduction events. In the field of cytokine ... [more ▼]

In recent years, the elucidation of the structures of many signalling molecules has allowed new insights into the molecular mechanisms that govern signal transduction events. In the field of cytokine signalling, the solved structures of cytokine/receptor complexes and of key components involved in signal transduction such as STAT factors or the tyrosine phosphatase SHP2 have broadened our understanding of the molecular basis of the signalling events and provided key information for the rational design of therapeutic approaches to modulate or block cytokine signal transduction. Unfortunately, no structural data on the intracellular parts of cytokine receptors are available. The exact molecular mechanism underlying one of the first steps in signal transduction, namely the recruitment of signalling components to the cytoplasmic parts of cytokine receptors, remains elusive. Here we investigated possible mechanisms underlying the different potency of the STAT3-activating motifs of gp130 after IL-6 stimulation. Our data indicate that the extent of STAT3 activation by the different receptor motifs is not influenced by structural features such as contacts between the two gp130 chains. In addition, the proximity of the negatively regulating motif around tyrosine Y759 to the different STAT3-recruiting motifs does not seem to be responsible for their differential capacity to activate STAT3. However, the potency of a specific motif to activate STAT3 directly reflects the affinity for the binding of STAT3 to this motif. [less ▲]

Detailed reference viewed: 53 (0 UL)
Peer Reviewed
See detailBow to your partner for signaling.
Hermanns, Heike M.; Muller-Newen, Gerhard; Heinrich, Peter C. et al

in Nature Structural & Molecular Biology (2005), 12(6), 476-8

Detailed reference viewed: 55 (1 UL)
Peer Reviewed
See detailMechanisms of SOCS3 phosphorylation upon interleukin-6 stimulation. Contributions of Src- and receptor-tyrosine kinases.
Sommer, Ulrike; Schmid, Christine; Sobota, Radoslaw M. et al

in Journal of Biological Chemistry (2005), 280(36), 31478-88

The suppressors of cytokine signaling (SOCS) are negative feedback inhibitors of cytokine signal transduction. SOCS3 is a key negative regulator of interleuking-6 (IL-6) signal transduction. Furthermore ... [more ▼]

The suppressors of cytokine signaling (SOCS) are negative feedback inhibitors of cytokine signal transduction. SOCS3 is a key negative regulator of interleuking-6 (IL-6) signal transduction. Furthermore, SOCS3 was shown to be phosphorylated upon treatment of cells with IL-2, and this has been reported to regulate its function and half-life. We set out to investigate whether SOCS3 phosphorylation may play a role in IL-6 signaling. Tyrosine-phosphorylated SOCS3 was detected upon treatment of mouse embryonic fibroblasts with IL-6. Interestingly, the observed SOCS3 phosphorylation does not require SOCS3 recruitment to phosphotyrosine (Tyr(P)) 759 of gp130, and the kinetics of SOCS3 phosphorylation do not match the activation kinetics of the Janus kinases. This suggests that other kinases may be involved in SOCS3 phosphorylation. Using Src and Janus kinase inhibitors as well as Src kinase-deficient mouse embryonic fibroblasts, we provide evidence that Src kinases, which we found to be constitutively active in these cells, are involved in the phosphorylation of IL-6-induced SOCS3. In addition, we found that receptor-tyrosine kinases such as platelet-derived growth factor receptor or epidermal growth factor receptor can very potently phosphorylate IL-6-induced SOCS3. Taken together, these results suggest that SOCS3 phosphorylation is not a JAK-mediated phenomenon but is dependent on the activity of other kinases such as Src kinases or receptor-tyrosine kinases, which can either be constitutively active or activated by an additional stimulus. [less ▲]

Detailed reference viewed: 37 (0 UL)
Peer Reviewed
See detailSTAT3 is enriched in nuclear bodies.
Herrmann, Andreas; Sommer, Ulrike; Pranada, Albert L. et al

in Journal of Cell Science (2004), 117(Pt 2), 339-49

Signal transducer and activator of transcription 3 (STAT3) is a transcription factor that is involved in a variety of biological functions. It is essential for the signal transduction of interleukin-6 (IL ... [more ▼]

Signal transducer and activator of transcription 3 (STAT3) is a transcription factor that is involved in a variety of biological functions. It is essential for the signal transduction of interleukin-6 (IL-6) and related cytokines. In response to IL-6 stimulation STAT3 becomes phosphorylated and translocates into the nucleus where it binds to enhancer sequences of target genes. We found that activated STAT3 is enriched in dot-like structures within the nucleus, which we termed STAT3 nuclear bodies. To examine the dynamics of STAT3 nuclear body formation, a fusion protein of STAT3 and yellow fluorescent protein (YFP) was constructed. Studies in living cells have shown that the appearance of STAT3 nuclear bodies is transient, correlating with the timecourse of tyrosine-phosphorylation of STAT3. Furthermore, we show by fluorescence recovery after photobleaching (FRAP) analysis that STAT3 within nuclear bodies consists of a highly mobile and an immobile fraction. Colocalization studies provided evidence that these bodies are accompanied with CREB binding protein (CBP) and acetylated histone H4, which are markers for transcriptionally active chromatin. Moreover, STAT3 nuclear bodies in HepG2 cells are not colocalized with promyelocytic leukemia oncoprotein (PML)-containing bodies; neither is a sumoylation of activated STAT3 detectable. Taken together, our data suggest that STAT3 nuclear bodies are either directly involved in active gene transcription or they serve as reservoirs of activated STAT3. [less ▲]

Detailed reference viewed: 68 (17 UL)
Peer Reviewed
See detailThe chemoattractants, IL-8 and formyl-methionyl-leucyl-phenylalanine, regulate granulocyte colony-stimulating factor signaling by inducing suppressor of cytokine signaling-1 expression.
Stevenson, Nigel J.; Haan, Serge UL; McClurg, Angela E. et al

in Journal of immunology (Baltimore, Md. : 1950) (2004), 173(5), 3243-9

Suppressors of cytokine signaling (SOCS) are encoded by immediate early genes known to inhibit cytokine responses in a classical feedback loop. SOCS gene expression has been shown to be induced by many ... [more ▼]

Suppressors of cytokine signaling (SOCS) are encoded by immediate early genes known to inhibit cytokine responses in a classical feedback loop. SOCS gene expression has been shown to be induced by many cytokines, growth factors, and innate immune stimuli, such as LPS. In this paper, we report that the chemoattractants, IL-8 and fMLP, up-regulate SOCS1 mRNA in human myeloid cells, primary human neutrophils, PBMCs, and dendritic cells. fMLP rapidly up-regulates SOCS1, whereas the induction of SOCS1 upon IL-8 treatment is delayed. IL-8 and fMLP did not signal via Jak/STATs in primary human macrophages, thus implicating the induction of SOCS by other intracellular pathways. As chemoattractant-induced SOCS1 expression in neutrophils may play an important role in regulating the subsequent response to growth promoting cytokines like G-CSF, we investigated the effect of chemoattractant-induced SOCS1 on cytokine signal transduction. We show that pretreatment of primary human neutrophils with fMLP or IL-8 blocks G-CSF-mediated STAT3 activation. This study provides evidence for cross-talk between chemoattractant and cytokine signal transduction pathways involving SOCS proteins, suggesting that these chemotactic factors may desensitize neutrophils to G-CSF via rapid induction of SOCS1 expression. [less ▲]

Detailed reference viewed: 84 (6 UL)
Peer Reviewed
See detailJanus kinase (Jak) subcellular localization revisited: the exclusive membrane localization of endogenous Janus kinase 1 by cytokine receptor interaction uncovers the Jak.receptor complex to be equivalent to a receptor tyrosine kinase
Behrmann, Iris UL; Smyczek, Tanja; Heinrich, Peter C. et al

in Journal of Biological Chemistry (2004), 279(34), 35486-93

The Janus kinases are considered to be cytoplasmic kinases that constitutively associate with the cytoplasmic region of cytokine receptors, and the Janus kinases (Jaks) are crucial for cytokine signal ... [more ▼]

The Janus kinases are considered to be cytoplasmic kinases that constitutively associate with the cytoplasmic region of cytokine receptors, and the Janus kinases (Jaks) are crucial for cytokine signal transduction. We investigated Jak1 localization using subcellular fractionation techniques and fluorescence microscopy (immunofluorescence and yellow fluorescent protein-tagged Jaks). In the different experimental approaches we found Jak1 (as well as Jak2 and Tyk2) predominantly located at membranes. In contrast to previous reports we did not observe Jak proteins in significant amounts within the nucleus or in the cytoplasm. The cytoplasmic localization observed for the Jak1 mutant L80A/Y81A, which is unable to associate with cytokine receptors, indicates that Jak1 does not have a strong intrinsic membrane binding potential and that only receptor binding is crucial for the membrane recruitment. Finally we show that Jak1 remains a membrane-localized protein after cytokine stimulation. These data strongly support the hypothesis that cytokine receptor.Janus kinase complexes can be regarded as receptor tyrosine kinases. [less ▲]

Detailed reference viewed: 62 (2 UL)
See detailFusionierte lösliche Rezeptoren als hochaktive Zytokin-Inhibitoren.
Müller-Newen, Gerhard; Haan, Serge UL; Heinrich, Peter C.

in Biospektrum (2003), Sonderausgabe(9. Jahrgang), 480-483

Detailed reference viewed: 28 (2 UL)
Peer Reviewed
See detailActivation of STAT3 by IL-6 and IL-10 in primary human macrophages is differentially modulated by suppressor of cytokine signaling 3.
Niemand, Claudia; Nimmesgern, Ariane; Haan, Serge UL et al

in Journal of immunology (Baltimore, Md. : 1950) (2003), 170(6), 3263-72

On human macrophages IL-10 acts as a more potent anti-inflammatory cytokine than IL-6, although both cytokines signal mainly via activation of the transcription factor STAT3. In this study we compare IL ... [more ▼]

On human macrophages IL-10 acts as a more potent anti-inflammatory cytokine than IL-6, although both cytokines signal mainly via activation of the transcription factor STAT3. In this study we compare IL-10 and IL-6 signaling in primary human macrophages derived from blood monocytes. Pretreatment of macrophages with PMA or the proinflammatory mediators LPS and TNF-alpha blocks IL-6-induced STAT3 activation, whereas IL-10-induced activation of STAT3 remains largely unaffected. Although LPS induces the feedback inhibitor suppressor of cytokine signaling 3 (SOCS3) in macrophages, inhibition of IL-6 signal transduction by LPS occurs rapidly and does not depend on gene transcription. We also found that pretreatment of macrophages with IL-10 inhibits subsequent STAT3 activation by IL-6, whereas IL-10-induced STAT3 activation is not affected by preincubation with IL-6. This cross-inhibition is dependent on active transcription and might therefore be explained by different sensitivities of IL-10 and IL-6 signaling toward the feedback inhibitor SOCS3, which is induced by both cytokines. In contrast to the IL-6 signal transducer gp130, which has been previously shown to recruit SOCS3 to one of its phosphotyrosine residues (Y759), peptide precipitation experiments suggest that SOCS3 does not interact with phosphorylated tyrosine motifs of the IL-10R. Taken together, different sensitivities of IL-10 and IL-6 signaling toward mechanisms that inhibit the Janus kinase/STAT pathway define an important mechanism that contributes to the different anti-inflammatory potencies of these two cytokines. [less ▲]

Detailed reference viewed: 91 (3 UL)
Peer Reviewed
See detailA fusion protein of the gp130 and interleukin-6Ralpha ligand-binding domains acts as a potent interleukin-6 inhibitor.
Ancey, Cecile; Kuster, Andrea; Haan, Serge UL et al

in Journal of Biological Chemistry (2003), 278(19), 16968-72

Interleukin (IL)-6 is involved in the maintenance and progression of several diseases such as multiple myeloma, rheumatoid arthritis, or osteoporosis. The present work aims at the development of an IL-6 ... [more ▼]

Interleukin (IL)-6 is involved in the maintenance and progression of several diseases such as multiple myeloma, rheumatoid arthritis, or osteoporosis. The present work aims at the development of an IL-6 inhibitor for the use in anti-cytokine therapies. The IL-6 receptor is composed of two different subunits, an alpha-subunit (IL-6Ralpha) that binds IL-6 with low affinity and a beta-subunit (gp130) that binds the IL-6.IL-6Ralpha complex with high affinity and as a result triggers intracellular signaling. In its soluble form, gp130 is a natural antagonist that neutralizes IL-6.soluble IL-6Ralpha complexes. It was our strategy to appropriately fuse the two receptor subunit fragments involved in IL-6 receptor complex formation to bind IL-6 with high affinity and to antagonize its effects. The ligand-binding domains of gp130 (D1-D2-D3) and IL-6Ralpha (D2-D3) were connected using three different linkers. The resulting constructs were expressed in stably transfected insect cells and tested for their ability to inhibit IL-6 activity in several in vitro systems. All fusion proteins were strong inhibitors of IL-6 signaling and abrogated IL-6-induced phosphorylation of STAT3, proliferation of transfected Ba/F3 cells, and induction of acute-phase protein synthesis. As intended, the fused receptors were much more effective than the separately expressed soluble receptor proteins. The fusion protein strategy presented here can also be applied to other cytokines that signal via receptors composed of two different subunits to design new potent inhibitors for anti-cytokine therapies. [less ▲]

Detailed reference viewed: 41 (3 UL)
Peer Reviewed
See detailTyrosine phosphorylation disrupts elongin interaction and accelerates SOCS3 degradation.
Haan, Serge UL; Ferguson, Paul; Sommer, Ulrike et al

in Journal of Biological Chemistry (2003), 278(34), 31972-9

The suppressors of cytokine signaling (SOCS) are negative feedback inhibitors of cytokine and growth factor-induced signal transduction. The C-terminal SOCS box region is thought to regulate SOCS protein ... [more ▼]

The suppressors of cytokine signaling (SOCS) are negative feedback inhibitors of cytokine and growth factor-induced signal transduction. The C-terminal SOCS box region is thought to regulate SOCS protein stability most likely via an elongin C interaction. In the present study, we have found that phosphorylation of SOCS3 at two tyrosine residues in the conserved SOCS box, Tyr204 and Tyr221, can inhibit the SOCS3-elongin C interaction and activate proteasome-mediated SOCS3 degradation. Jak-mediated phosphorylation of SOCS3 decreased SOCS3 protein half-life, and phosphorylation of both Tyr204 and Tyr221 was required to fully destabilize SOCS3. In contrast, a phosphorylation-deficient mutant of SOCS3, Y204F,Y221F, remained stable in the presence of activated Jak2 and receptor tyrosine kinases. SOCS3 stability correlated with the relative amount that bound elongin C, because in vitro phosphorylation of a SOCS3-glutathione S-transferase fusion protein abolished its ability to interact with elongin C. In addition, a SOCS3/SOCS1 chimera that co-precipitates with markedly increased elongin C, was significantly more stable than wild-type SOCS3. The data suggest that interaction with elongin C stabilizes SOCS3 protein expression and that phosphorylation of SOCS box tyrosine residues disrupts the complex and enhances proteasome-mediated degradation of SOCS3. [less ▲]

Detailed reference viewed: 58 (0 UL)