References of "Heinäniemi, Merja"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailHemap: An nteractive online resource for characterizing molecular phenotypes across hematologic malignancies
Pölönen, Petri; Mehtonen, Juha; Lin, Jake et al

in Cancer Research (2019)

Large collections of genome-wide data can facilitate the characterization of disease states and subtypes, permitting pan-cancer analysis of molecular phenotypes and evaluation of disease contexts for new ... [more ▼]

Large collections of genome-wide data can facilitate the characterization of disease states and subtypes, permitting pan-cancer analysis of molecular phenotypes and evaluation of disease contexts for new therapeutic approaches. We analyzed 9,544 transcriptomes from over 30 hematologic malignancies, normal blood cell types and cell lines, and show that the disease types can be stratified in a data-driven manner. We utilized the obtained molecular clustering for discovery of cluster-specific pathway activity, new biomarkers and in silico drug target prioritization through integration with drug target databases. Using known vulnerabilities and available drug screens in benchmarking, we highlight the importance of integrating the molecular phenotype context and drug target expression for in silico prediction of drug responsiveness. Our analysis implicates BCL2 expression level as important indicator of venetoclax responsiveness and provides a rationale for its targeting in specific leukemia subtypes and multiple myeloma, links several polycomb group proteins that could be targeted by small molecules (SFMBT1, CBX7 and EZH1) with CLL, and supports CDK6 as disease-specific target in AML. Through integration with proteomics data, we characterized target protein expression for pre-B leukemia immunotherapy candidates, including DPEP1. These molecular data can be explored using our freely available interactive resource, Hemap, for expediting therapeutic innovations in hematologic malignancies. [less ▲]

Detailed reference viewed: 74 (7 UL)
Full Text
Peer Reviewed
See detailAnalysis of primary microRNA loci from nascent transcriptomes reveals regulatory domains governed by chromatin architecture
Bouvy-Liivrand, Maria; Hernandez de Sande, Ana; Pölönen, Petri et al

in Nucleic Acids Research (2017)

Changes in mature microRNA (miRNA) levels that occur downstream of signaling cascades play an important role during human development and disease. However, the regulation of primary microRNA (pri-miRNA ... [more ▼]

Changes in mature microRNA (miRNA) levels that occur downstream of signaling cascades play an important role during human development and disease. However, the regulation of primary microRNA (pri-miRNA) genes remains to be dissected in detail. To address this, we followed a data-driven approach and developed a transcript identification, validation and quantification pipeline for characterizing the regulatory domains of pri-miRNAs. Integration of 92 nascent transcriptomes and multilevel data from cells arising from ecto-, endo- and mesoderm lineages reveals cell type-specific expression patterns, allows fine-resolution mapping of transcription start sites (TSS) and identification of candidate regulatory regions. We show that inter- and intragenic pri-miRNA transcripts span vast genomic regions and active TSS locations differ across cell types, exemplified by the mir-29a∼29b-1, mir-100∼let-7a-2∼125b-1 and miR-221∼222 clusters. Considering the presence of multiple TSS as an important regulatory feature at miRNA loci, we developed a strategy to quantify differential TSS usage. We demonstrate that the TSS activities associate with cell type-specific super-enhancers, differential stimulus responsiveness and higher-order chromatin structure. These results pave the way for building detailed regulatory maps of miRNA loci. [less ▲]

Detailed reference viewed: 108 (5 UL)
Full Text
Peer Reviewed
See detailIntegrated metabolic modelling reveals cell-type specific epigenetic control points of the macrophage metabolic network
Pacheco, Maria UL; John, Elisabeth UL; Kaoma, Tony et al

in BMC Genomics (2015), 16(809),

Background: The reconstruction of context-specific metabolic models from easily and reliably measurable features such as transcriptomics data will be increasingly important in research and medicine ... [more ▼]

Background: The reconstruction of context-specific metabolic models from easily and reliably measurable features such as transcriptomics data will be increasingly important in research and medicine. Current reconstruction methods suffer from high computational effort and arbitrary threshold setting. Moreover, understanding the underlying epigenetic regulation might allow the identification of putative intervention points within metabolic networks. Genes under high regulatory load from multiple enhancers or super-enhancers are known key genes for disease and cell identity. However, their role in regulation of metabolism and their placement within the metabolic networks has not been studied. Methods: Here we present FASTCORMICS, a fast and robust workflow for the creation of high-quality metabolic models from transcriptomics data. FASTCORMICS is devoid of arbitrary parameter settings and due to its low computational demand allows cross-validation assays. Applying FASTCORMICS, we have generated models for 63 primary human cell types from microarray data, revealing significant differences in their metabolic networks. Results: To understand the cell type-specific regulation of the alternative metabolic pathways we built multiple models during differentiation of primary human monocytes to macrophages and performed ChIP-Seq experiments for histone H3 K27 acetylation (H3K27ac) to map the active enhancers in macrophages. Focusing on the metabolic genes under high regulatory load from multiple enhancers or super-enhancers, we found these genes to show the most cell type-restricted and abundant expression profiles within their respective pathways. Importantly, the high regulatory load genes are associated to reactions enriched for transport reactions and other pathway entry points, suggesting that they are critical regulatory control points for cell type-specific metabolism. Conclusions: By integrating metabolic modelling and epigenomic analysis we have identified high regulatory load as a common feature of metabolic genes at pathway entry points such as transporters within the macrophage metabolic network. Analysis of these control points through further integration of metabolic and gene regulatory networks in various contexts could be beneficial in multiple fields from identification of disease intervention strategies to cellular reprogramming. [less ▲]

Detailed reference viewed: 219 (38 UL)
Full Text
Peer Reviewed
See detailSystems genomics evaluation of the SH-SY5Y neuroblastoma cell line as a model for Parkinson’s disease
Krishna, Abhimanyu UL; Biryukov, Maria UL; Trefois, Christophe UL et al

in BMC Genomics (2014), 15(1154),

Background: The human neuroblastoma cell line, SH-SY5Y, is a commonly used cell line in studies related to neurotoxicity, oxidative stress, and neurodegenerative diseases. Although this cell line is often ... [more ▼]

Background: The human neuroblastoma cell line, SH-SY5Y, is a commonly used cell line in studies related to neurotoxicity, oxidative stress, and neurodegenerative diseases. Although this cell line is often used as a cellular model for Parkinson’s disease, the relevance of this cellular model in the context of Parkinson’s disease (PD) and other neurodegenerative diseases has not yet been systematically evaluated. Results: We have used a systems genomics approach to characterize the SH-SY5Y cell line using whole-genome sequencing to determine the genetic content of the cell line and used transcriptomics and proteomics data to determine molecular correlations. Further, we integrated genomic variants using a network analysis approach to evaluate the suitability of the SH-SY5Y cell line for perturbation experiments in the context of neurodegenerative diseases, including PD. Conclusions: The systems genomics approach showed consistency across different biological levels (DNA, RNA and protein concentrations). Most of the genes belonging to the major Parkinson’s disease pathways and modules were intact in the SH-SY5Y genome. Specifically, each analysed gene related to PD has at least one intact copy in SH-SY5Y. The disease-specific network analysis approach ranked the genetic integrity of SH-SY5Y as higher for PD than for Alzheimer’s disease but lower than for Huntington’s disease and Amyotrophic Lateral Sclerosis for loss of function perturbation experiments. [less ▲]

Detailed reference viewed: 181 (25 UL)
Full Text
Peer Reviewed
See detailChIP-seq profiling of the active chromatin marker H3K4me3 and PPARγ, CEBPα and LXR target genes in human SGBS adipocytes
Galhardo, Mafalda Sofia UL; Sinkkonen, Lasse UL; Berninger, Philipp et al

in Genomics Data (2014), 2

Transcription factors (TFs) represent key factors to establish a cellular phenotype. It is known that several TFs could play a role in disease, yet less is known so far how their targets overlap. We ... [more ▼]

Transcription factors (TFs) represent key factors to establish a cellular phenotype. It is known that several TFs could play a role in disease, yet less is known so far how their targets overlap. We focused here on identifying the most highly induced TFs and their putative targets during human adipogenesis. Applying chromatin immunoprecipitation coupled with deep sequencing (ChIP-Seq) in the human SGBS pre-adipocyte cell line, we identified genes with binding sites in their vicinity for the three TFs studied, PPARγ, CEBPα and LXR. Here we describe the experimental design and quality controls in detail for the deep sequencing data and related results published by Galhardo et al. in Nucleic Acids Research 2014 [1] associated with the data uploaded to NCBI Gene Expression Omnibus (). [less ▲]

Detailed reference viewed: 143 (12 UL)