References of "Hauser, H"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailGARP: a key receptor controlling FOXP3 in human regulatory T cells
Probst-Kepper, M.; Geffers, R.; Kröger, A. et al

in Journal of Cellular & Molecular Medicine (2009), 13(9B), 3343-57

Recent evidence suggests that regulatory pathways might control sustained high levels of FOXP3 in regulatory CD4(+)CD25(hi) T (T(reg)) cells. Based on transcriptional profiling of ex vivo activated T(reg ... [more ▼]

Recent evidence suggests that regulatory pathways might control sustained high levels of FOXP3 in regulatory CD4(+)CD25(hi) T (T(reg)) cells. Based on transcriptional profiling of ex vivo activated T(reg) and helper CD4(+)CD25(-) T (T(h)) cells we have identified GARP (glycoprotein-A repetitions predominant), LGALS3 (lectin, galactoside-binding, soluble, 3) and LGMN (legumain) as novel genes implicated in human T(reg) cell function, which are induced upon T-cell receptor stimulation. Retroviral overexpression of GARP in antigen-specific T(h) cells leads to an efficient and stable re-programming of an effector T cell towards a regulatory T cell, which involves up-regulation of FOXP3, LGALS3, LGMN and other T(reg)-associated markers. In contrast, overexpression of LGALS3 and LGMN enhance FOXP3 and GARP expression, but only partially induced a regulatory phenotype. Lentiviral down-regulation of GARP in T(reg) cells significantly impaired the suppressor function and was associated with down-regulation of FOXP3. Moreover, down-regulation of FOXP3 resulted in similar phenotypic changes and down-regulation of GARP. This provides compelling evidence for a GARP-FOXP3 positive feedback loop and provides a rational molecular basis for the known difference between natural and transforming growth factor-beta induced T(reg) cells as we show here that the latter do not up-regulate GARP. In summary, we have identified GARP as a key receptor controlling FOXP3 in T(reg) cells following T-cell activation in a positive feedback loop assisted by LGALS3 and LGMN, which represents a promising new system for the therapeutic manipulation of T cells in human disease. [less ▲]

Detailed reference viewed: 172 (3 UL)
Full Text
Peer Reviewed
See detailBimodal and hysteretic expression in mammalian cells from a synthetic gene circuit
May, T.; Eccleston, L. J.; Markusic, D. et al

in Public Library of Science ONE (2008), 3(6),

In order to establish cells and organisms with predictable properties, synthetic biology makes use of controllable, synthetic genetic devices. These devices are used to replace or to interfere with ... [more ▼]

In order to establish cells and organisms with predictable properties, synthetic biology makes use of controllable, synthetic genetic devices. These devices are used to replace or to interfere with natural pathways. Alternatively, they may be interlinked with endogenous pathways to create artificial networks of higher complexity. While these approaches have been already successful in prokaryotes and lower eukaryotes, the implementation of such synthetic cassettes in mammalian systems and even animals is still a major obstacle. This is mainly due to the lack of methods that reliably and efficiently transduce synthetic modules without compromising their regulation properties. To pave the way for implementation of synthetic regulation modules in mammalian systems we utilized lentiviral transduction of synthetic modules. A synthetic positive feedback loop, based on the Tetracycline regulation system was implemented in a lentiviral vector system and stably integrated in mammalian cells. This gene regulation circuit yields a bimodal expression response. Based on experimental data a mathematical model based on stochasticity was developed which matched and described the experimental findings. Modelling predicted a hysteretic expression responsewhich was verified experimentally. Thereby supporting the idea that the system is driven by stochasticity. The results presented here highlight that the combination of three independent tools/methodologies facilitate the reliable installation of synthetic gene circuits with predictable expression characteristics in mammalian cells and organisms. [less ▲]

Detailed reference viewed: 61 (0 UL)