References of "Hana, Anisa"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailVisualization of the medial forebrain bundle using diffusion tensor imaging.
Hana, Ardian; Hana, Anisa; Dooms, Georges et al

in Frontiers in Neuroanatomy (2015), 9

Diffusion tensor imaging is a technique that enables physicians the portrayal of white matter tracts in vivo. We used this technique in order to depict the medial forebrain bundle (MFB) in 15 consecutive ... [more ▼]

Diffusion tensor imaging is a technique that enables physicians the portrayal of white matter tracts in vivo. We used this technique in order to depict the medial forebrain bundle (MFB) in 15 consecutive patients between 2012 and 2015. Men and women of all ages were included. There were six women and nine men. The mean age was 58.6 years (39-77). Nine patients were candidates for an eventual deep brain stimulation. Eight of them suffered from Parkinson's disease and one had multiple sclerosis. The remaining six patients suffered from different lesions which were situated in the frontal lobe. These were 2 metastasis, 2 meningiomas, 1 cerebral bleeding, and 1 glioblastoma. We used a 3DT1-sequence for the navigation. Furthermore T2- and DTI- sequences were performed. The FOV was 200 x 200 mm(2), slice thickness 2 mm, and an acquisition matrix of 96 x 96 yielding nearly isotropic voxels of 2 x 2 x 2 mm. 3-Tesla-MRI was carried out strictly axial using 32 gradient directions and one b0-image. We used Echo-Planar-Imaging (EPI) and ASSET parallel imaging with an acceleration factor of 2. b-value was 800 s/mm(2). The maximal angle was 50 degrees . Additional scanning time was < 9 min. We were able to visualize the MFB in 12 of our patients bilaterally and in the remaining three patients we depicted the MFB on one side. It was the contralateral side of the lesion. These were 2 meningiomas and one metastasis. Portrayal of the MFB is possible for everyday routine for neurosurgical interventions. As part of the reward circuitry it might be of substantial importance for neurosurgeons during deep brain stimulation in patients with psychiatric disorders. Surgery in this part of the brain should always take the preservation of this white matter tract into account. [less ▲]

Detailed reference viewed: 62 (5 UL)
Full Text
Peer Reviewed
See detailDTI of the visual pathway - white matter tracts and cerebral lesions.
Hana, Ardian; Husch, Andreas UL; Gunness, Vimal Raj Nitish et al

in Journal of visualized experiments : JoVE (2014), (90),

DTI is a technique that identifies white matter tracts (WMT) non-invasively in healthy and non-healthy patients using diffusion measurements. Similar to visual pathways (VP), WMT are not visible with ... [more ▼]

DTI is a technique that identifies white matter tracts (WMT) non-invasively in healthy and non-healthy patients using diffusion measurements. Similar to visual pathways (VP), WMT are not visible with classical MRI or intra-operatively with microscope. DIT will help neurosurgeons to prevent destruction of the VP while removing lesions adjacent to this WMT. We have performed DTI on fifty patients before and after surgery between March 2012 to January 2014. To navigate we used a 3DT1-weighted sequence. Additionally, we performed a T2-weighted and DTI-sequences. The parameters used were, FOV: 200 x 200 mm, slice thickness: 2 mm, and acquisition matrix: 96 x 96 yielding nearly isotropic voxels of 2 x 2 x 2 mm. Axial MRI was carried out using a 32 gradient direction and one b0-image. We used Echo-Planar-Imaging (EPI) and ASSET parallel imaging with an acceleration factor of 2 and b-value of 800 s/mm(2). The scanning time was less than 9 min. The DTI-data obtained were processed using a FDA approved surgical navigation system program which uses a straightforward fiber-tracking approach known as fiber assignment by continuous tracking (FACT). This is based on the propagation of lines between regions of interest (ROI) which is defined by a physician. A maximum angle of 50, FA start value of 0.10 and ADC stop value of 0.20 mm(2)/s were the parameters used for tractography. There are some limitations to this technique. The limited acquisition time frame enforces trade-offs in the image quality. Another important point not to be neglected is the brain shift during surgery. As for the latter intra-operative MRI might be helpful. Furthermore the risk of false positive or false negative tracts needs to be taken into account which might compromise the final results. [less ▲]

Detailed reference viewed: 57 (2 UL)