References of "Grünewald, Anne 50010708"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailMtDNA deletions discriminate affected from unaffected LRRK2 mutation carriers
Ouzren, Nassima UL; Delcambre, Sylvie UL; Ghelfi, Jenny UL et al

in Annals of Neurology (2019), 86(2), 324-326

Detailed reference viewed: 58 (4 UL)
Full Text
Peer Reviewed
See detailMutations in RHOT1 disrupt ER-mitochondria contact sites interfering with calcium homeostasis and mitochondrial dynamics in Parkinson's disease.
Grossmann, Dajana UL; Berenguer, Clara UL; Bellet, Marie Estelle et al

in Antioxidants & redox signaling (2019)

OBJECTIVE: The outer mitochondrial membrane protein Miro1 is a crucial player in mitochondrial dynamics and calcium homeostasis. Recent evidence indicated that Miro1 mediates calcium-induced mitochondrial ... [more ▼]

OBJECTIVE: The outer mitochondrial membrane protein Miro1 is a crucial player in mitochondrial dynamics and calcium homeostasis. Recent evidence indicated that Miro1 mediates calcium-induced mitochondrial shape transition (MiST), which is a prerequisite for the initiation of mitophagy. Moreover, altered Miro1 protein levels have emerged as a shared feature of monogenic and sporadic Parkinson's disease (PD), but, so far, no disease-associated variants in RHOT1 have been identified. RESULTS: Here, for the first time, we describe heterozygous RHOT1 mutations in two PD patients (het c.815G>A; het c.1348C>T) and identified mitochondrial phenotypes with reduced mitochondrial mass in patient-derived cellular models. Both mutations lead to decreased ER-mitochondrial contact sites and calcium dyshomeostasis. As a consequence, energy metabolism was impaired, which in turn lead to increased mitophagy. CONCLUSION: In summary, our data support the role of Miro1 in maintaining calcium homeostasis and mitochondrial quality control in PD. [less ▲]

Detailed reference viewed: 134 (16 UL)
Full Text
Peer Reviewed
See detailNew insights into the complex role of mitochondria in Parkinson's disease
Grünewald, Anne UL; Kumar, Kishore R; Sue, Carolyn M

in Progress in Neurobiology (2019), 177

New discoveries providing insights into mitochondrial bioenergetics, their dynamic interactions as well as their role in cellular homeostasis have dramatically advanced our understanding of the ... [more ▼]

New discoveries providing insights into mitochondrial bioenergetics, their dynamic interactions as well as their role in cellular homeostasis have dramatically advanced our understanding of the neurodegenerative process of Parkinson's disease (PD). Respiratory chain impairment is a key feature in sporadic PD patients and there is growing evidence that links proteins encoded by PD-associated genes to disturbances in mitochondrial function. Against the backdrop of latest advances in the development of PD treatments that target mitochondria, we aim to give an overview of the literature published in the last three decades on the significance of mitochondria in the pathogenesis of PD. We describe the contribution of mitochondrial genome alterations and PD-associated genes to mitochondrial maintenance. We highlight mitophagy as a key mechanism in neurodegeneration. Moreover, we focus on the reciprocal interaction between alpha-synuclein aggregation and mitochondrial dysfunction. We discuss a novel trafficking pathway involving mitochondrial-derived vesicles within the context of PD and provide a synopsis of the most recently emerging topics in PD research with respect to mitochondria. This includes the relationship between mitochondria and cell-mediated immunity, the ER-mitochondria axis, sirtuin-mediated mitochondrial stress response and the role of micro RNAs in the aetiology of PD. In addition, recent studies have challenged the neuro-centric view of PD pathology, moving microglia and astrocytes into the research spotlight. Greater insights into these mechanisms may hold the key for the development of novel targeted therapies, addressing the need for a disease-modifying treatment, which has remained elusive to date. [less ▲]

Detailed reference viewed: 95 (3 UL)
Full Text
Peer Reviewed
See detailGenotype-phenotype relations for the Parkinson’s disease genes SNCA, LRRK2, VPS35: MDSGene Review.
Trinh, Joanne; Zeldenrust, Florentine M. J.; Huang, Jana et al

in Movement Disorders (2018), 33(12), 1857-1870

This comprehensive MDSGene review is devoted to the three autosomal-dominant PD forms: PARK-SNCA, PARK-LRRK2, and PARK-VPS35. It follows MDSGene's standardized data extraction protocol, screened a total ... [more ▼]

This comprehensive MDSGene review is devoted to the three autosomal-dominant PD forms: PARK-SNCA, PARK-LRRK2, and PARK-VPS35. It follows MDSGene's standardized data extraction protocol, screened a total of 2,972 citations, and is based on fully curated phenotypic and genotypic data on 937 patients with dominantly inherited PD attributed to 44 different mutations in SNCA, LRRK2, or VPS35. All of these data are also available in an easily searchable online database (www.mdsgene.org), which additionally provides descriptive summary statistics on phenotypic and genetic data. Despite the high degree of missingness of phenotypic features and unsystematic reporting of genotype data in the original literature, the present review recapitulates many of the previously described findings including later onset of disease (median age at onset: ∼49 years) compared to recessive forms of PD of an overall excellent treatment response. Our systematic review validates previous reports showing that SNCA mutation carriers have a younger age at onset compared to LRRK2 and VPS35 (P < 0.001). SNCA mutation carriers often have additional psychiatric symptoms, and although not exclusive to only LRRK2 or VPS35 mutation carriers, LRRK2 mutation carriers have a typical form of PD, and, lastly, VPS35 mutation carriers have good response to l-dopa. [less ▲]

Detailed reference viewed: 24 (1 UL)
Full Text
Peer Reviewed
See detail3D Cultures of Parkinson's Disease‐Specific Dopaminergic Neurons for High Content Phenotyping and Drug Testing
Bolognin, Silvia UL; Fossépré, Marie; Qing, Xiaobing et al

in Advanced Science (2018)

Parkinson's disease (PD)‐specific neurons, grown in standard 2D cultures, typically only display weak endophenotypes. The cultivation of PD patient‐specific neurons, derived from induced pluripotent stem ... [more ▼]

Parkinson's disease (PD)‐specific neurons, grown in standard 2D cultures, typically only display weak endophenotypes. The cultivation of PD patient‐specific neurons, derived from induced pluripotent stem cells carrying the LRRK2‐G2019S mutation, is optimized in 3D microfluidics. The automated image analysis algorithms are implemented to enable pharmacophenomics in disease‐relevant conditions. In contrast to 2D cultures, this 3D approach reveals robust endophenotypes. High‐content imaging data show decreased dopaminergic differentiation and branching complexity, altered mitochondrial morphology, and increased cell death in LRRK2‐G2019S neurons compared to isogenic lines without using stressor agents. Treatment with the LRRK2 inhibitor 2 (Inh2) rescues LRRK2‐G2019S‐dependent dopaminergic phenotypes. Strikingly, a holistic analysis of all studied features shows that the genetic background of the PD patients, and not the LRRK2‐G2019S mutation, constitutes the strongest contribution to the phenotypes. These data support the use of advanced in vitro models for future patient stratification and personalized drug development. [less ▲]

Detailed reference viewed: 198 (31 UL)
Full Text
Peer Reviewed
See detailMutationen im VSP13D-Gen verursachen eine oftmals frühkindliche spastische Ataxie
Grünewald, Anne UL

in DGNeurologie (2018), 1(1), 58-59

Detailed reference viewed: 53 (0 UL)
Full Text
Peer Reviewed
See detailSubcellular origin of mitochondrial DNA deletions in human skeletal muscle.
Vincent, Amy E; Rosa, Hannah S; Pabis, Kamil et al

in Annals of Neurology (2018), 84(2), 289-301

OBJECTIVE: In patients with mitochondrial DNA (mtDNA) maintenance disorders and with aging, mtDNA deletions sporadically form and clonally expand within individual muscle fibers, causing respiratory chain ... [more ▼]

OBJECTIVE: In patients with mitochondrial DNA (mtDNA) maintenance disorders and with aging, mtDNA deletions sporadically form and clonally expand within individual muscle fibers, causing respiratory chain deficiency. This study aimed to identify the sub-cellular origin and potential mechanisms underlying this process. METHODS: Serial skeletal muscle cryosections from patients with multiple mtDNA deletions were subjected to subcellular immunofluorescent, histochemical, and genetic analysis. RESULTS: We report respiratory chain-deficient perinuclear foci containing mtDNA deletions, which show local elevations of both mitochondrial mass and mtDNA copy number. These subcellular foci of respiratory chain deficiency are associated with a local increase in mitochondrial biogenesis and unfolded protein response signaling pathways. We also find that the commonly reported segmental pattern of mitochondrial deficiency is consistent with the three-dimensional organization of the human skeletal muscle mitochondrial network. INTERPRETATION: We propose that mtDNA deletions first exceed the biochemical threshold causing biochemical deficiency in focal regions adjacent to the myonuclei, and induce mitochondrial biogenesis before spreading across the muscle fiber. These subcellular resolution data provide new insights into the possible origin of mitochondrial respiratory chain deficiency in mitochondrial myopathy. [less ▲]

Detailed reference viewed: 42 (0 UL)
Full Text
Peer Reviewed
See detailFaithful SGCE imprinting in iPSC-derived cortical neurons: an endogenous cellular model of myoclonus-dystonia
Grütz, Karen; Weisbach, Anne; Lohmann, Katja et al

in Scientific Reports (2017)

In neuropathology research, induced pluripotent stem cell (iPSC)-derived neurons are considered a tool closely resembling the patient brain. Albeit in respect to epigenetics, this concept has been ... [more ▼]

In neuropathology research, induced pluripotent stem cell (iPSC)-derived neurons are considered a tool closely resembling the patient brain. Albeit in respect to epigenetics, this concept has been challenged. We generated iPSC-derived cortical neurons from myoclonus-dystonia patients with mutations (W100G and R102X) in the maternally imprinted ε-sarcoglycan (SGCE) gene and analysed properties such as imprinting, mRNA and protein expression. Comparison of the promoter during reprogramming and differentiation showed tissue-independent differential methylation. DNA sequencing with methylation-specific primers and cDNA analysis in patient neurons indicated selective expression of the mutated paternal SGCE allele. While fibroblasts only expressed the ubiquitous mRNA isoform, brain-specific SGCE mRNA and ε-sarcoglycan protein were detected in iPSC-derived control neurons. However, neuronal protein levels were reduced in both mutants. Our phenotypic characterization highlights the suitability of iPSC-derived cortical neurons with SGCE mutations for myoclonus-dystonia research and, in more general terms, prompts the use of iPSC-derived cellular models to study epigenetic mechanisms impacting on health and disease. [less ▲]

Detailed reference viewed: 50 (0 UL)
Full Text
Peer Reviewed
See detailSLP-2 interacts with Parkin in mitochondria and prevents mitochondrial dysfunction in Parkin-deficient human iPSC-derived neurons and Drosophila
Zanon, A; Kalvakuri, S; Rakovic, A et al

in Human Molecular Genetics (2017)

Mutations in the Parkin gene (PARK2) have been linked to a recessive form of Parkinson's disease (PD) characterized by the loss of dopaminergic neurons in the substantia nigra. Deficiencies of ... [more ▼]

Mutations in the Parkin gene (PARK2) have been linked to a recessive form of Parkinson's disease (PD) characterized by the loss of dopaminergic neurons in the substantia nigra. Deficiencies of mitochondrial respiratory chain complex I activity have been observed in the substantia nigra of PD patients, and loss of Parkin results in the reduction of complex I activity shown in various cell and animal models. Using co-immunoprecipitation and proximity ligation assays on endogenous proteins, we demonstrate that Parkin interacts with mitochondrial Stomatin-like protein 2 (SLP-2), which also binds the mitochondrial lipid cardiolipin and functions in the assembly of respiratory chain proteins. SH-SY5Y cells with a stable knockdown of Parkin or SLP-2, as well as induced pluripotent stem cell-derived neurons from Parkin mutation carriers, showed decreased complex I activity and altered mitochondrial network morphology. Importantly, induced expression of SLP-2 corrected for these mitochondrial alterations caused by reduced Parkin function in these cells. In-vivo Drosophila studies showed a genetic interaction of Parkin and SLP-2, and further, tissue-specific or global overexpression of SLP-2 transgenes rescued parkin mutant phenotypes, in particular loss of dopaminergic neurons, mitochondrial network structure, reduced ATP production, and flight and motor dysfunction. The physical and genetic interaction between Parkin and SLP-2 and the compensatory potential of SLP-2 suggest a functional epistatic relationship to Parkin and a protective role of SLP-2 in neurons. This finding places further emphasis on the significance of Parkin for the maintenance of mitochondrial function in neurons and provides a novel target for therapeutic strategies. [less ▲]

Detailed reference viewed: 42 (0 UL)
Full Text
Peer Reviewed
See detailAcylated and unacylated ghrelin confers neuroprotection to mesencephalic neurons
Wagner, J; Vulinovic, F; Grünewald, Anne UL et al

in Neuroscience (2017)

The polypeptide ghrelin is an endogenous ligand at the growth hormone secretagogue receptor 1a. To ghrelin multiple functions have been ascribed including promotion of gastrointestinal motility ... [more ▼]

The polypeptide ghrelin is an endogenous ligand at the growth hormone secretagogue receptor 1a. To ghrelin multiple functions have been ascribed including promotion of gastrointestinal motility. Postprandial ghrelin levels have been reported to be reduced in patients suffering from Parkinson disease (PD). Experimental studies revealed neuroprotective effects of ghrelin in different PD models. The purpose of the present study was (i) to further elucidate the mechanism underlying the neuroprotective action of ghrelin and (ii) to determine whether these effects occur with both the acylated and the unacylated form. The study was conducted in primary mesencephalic cultures treated with mitochondrial complex I and complex II inhibitors. We show that protective effects of ghrelin against complex I inhibition with MPP+ were independent of the acylation status of ghrelin, although acylated ghrelin appeared to be more potent. Protection by both forms was also observed when neurons were exposed to the complex II inhibitor 3-NP. Both forms led to higher oxygen consumption rates upon electron transport chain uncoupling, indicating that the two peptides may exert uncoupling effects themselves. We demonstrate that the rescue provided by ghrelin required calcium influx through L-type voltage-gated calcium channels. Whereas the protective effects of acylated ghrelin required receptor binding, effects of the unacylated form remained unaffected by treatment with a ghrelin receptor antagonist. Importantly, inhibition of ghrelin O-acyltransferase failed to reduce the activity of unacylated ghrelin. Overall, our data suggest that both acylated and unacylated ghrelin afford protection to dopamine neurons but through mechanisms that only partially overlap. [less ▲]

Detailed reference viewed: 23 (0 UL)
Full Text
Peer Reviewed
See detailMitochondrial DNA depletion in respiratory chain-deficient Parkinson disease neurons.
Grünewald, Anne UL; Rygiel, Karolina A.; Hepplewhite, Philippa D. et al

in Annals of Neurology (2016), 79(3), 366-378

OBJECTIVE: To determine the extent of respiratory chain abnormalities and investigate the contribution of mitochondrial DNA (mtDNA) to the loss of respiratory chain complexes (CI-IV) in the substantia ... [more ▼]

OBJECTIVE: To determine the extent of respiratory chain abnormalities and investigate the contribution of mitochondrial DNA (mtDNA) to the loss of respiratory chain complexes (CI-IV) in the substantia nigra (SN) of idiopathic Parkinson disease (IPD) patients at the single-neuron level. METHODS: Multiple-label immunofluorescence was applied to postmortem sections of 10 IPD patients and 10 controls to quantify the abundance of CI-IV subunits (NDUFB8 or NDUFA13, SDHA, UQCRC2 and COXI), and mitochondrial transcription factors (TFAM and TFB2M) relative to mitochondrial mass (Porin and GRP75) in dopaminergic neurons. To assess the involvement of mtDNA in respiratory chain deficiency in IPD, SN neurons, isolated with laser-capture microdissection, were assayed for mtDNA deletions, copy number and presence of transcription/replication-associated 7S DNA employing a triplex real-time PCR assay. RESULTS: While mitochondrial mass was unchanged in single SN neurons from IPD patients, we observed a significant reduction in the abundances of CI and II subunits. At single-cell level, CI and II deficiencies were correlated in patients. The CI deficit concomitantly occurred with low abundances of the mtDNA transcription factors TFAM and TFB2M, which also initiate transcription-primed mtDNA replication. Consistent with this, real-time PCR analysis revealed fewer transcription/replication-associated mtDNA molecules and an overall reduction in mtDNA copy number in patients. This effect was more pronounced in single IPD neurons with severe complex I deficiency. INTERPRETATION: Respiratory chain dysfunction in IPD neurons not only involves CI, but also extends to CII. These deficiencies are possibly a consequence of the interplay between nDNA and mtDNA-encoded factors mechanistically connected via TFAM. This article is protected by copyright. All rights reserved. [less ▲]

Detailed reference viewed: 252 (44 UL)
Full Text
Peer Reviewed
See detailUrinary LRRK2 phosphorylation: Penetrating the thicket of Parkinson disease?
Grünewald, Anne UL; Klein, C

in Neurology (2016)

Detailed reference viewed: 33 (3 UL)
Peer Reviewed
See detailSCNT-derived ESCs with mismatched mitochondria trigger an immune response in allogeneic hosts.
Deuse, Tobias; Wang, Dong; Stubbendorff, Mandy et al

in Cell Stem Cell (2015), 16(1), 33-8

The generation of pluripotent stem cells by somatic cell nuclear transfer (SCNT) has recently been achieved in human cells and sparked new interest in this technology. The authors reporting this ... [more ▼]

The generation of pluripotent stem cells by somatic cell nuclear transfer (SCNT) has recently been achieved in human cells and sparked new interest in this technology. The authors reporting this methodical breakthrough speculated that SCNT would allow the creation of patient-matched embryonic stem cells, even in patients with hereditary mitochondrial diseases. However, herein we show that mismatched mitochondria in nuclear-transfer-derived embryonic stem cells (NT-ESCs) possess alloantigenicity and are subject to immune rejection. In a murine transplantation setup, we demonstrate that allogeneic mitochondria in NT-ESCs, which are nucleus-identical to the recipient, may trigger an adaptive alloimmune response that impairs the survival of NT-ESC grafts. The immune response is adaptive, directed against mitochondrial content, and amenable for tolerance induction. Mitochondrial alloantigenicity should therefore be considered when developing therapeutic SCNT-based strategies. [less ▲]

Detailed reference viewed: 123 (10 UL)
Peer Reviewed
See detailA novel immunofluorescent assay to investigate oxidative phosphorylation deficiency in mitochondrial myopathy: understanding mechanisms and improving diagnosis.
Rocha, Mariana C.; Grady, John P.; Grünewald, Anne UL et al

in Scientific reports (2015), 5

Oxidative phosphorylation defects in human tissues are often challenging to quantify due to a mosaic pattern of deficiency. Biochemical assays are difficult to interpret due to the varying enzyme ... [more ▼]

Oxidative phosphorylation defects in human tissues are often challenging to quantify due to a mosaic pattern of deficiency. Biochemical assays are difficult to interpret due to the varying enzyme deficiency levels found in individual cells. Histochemical analysis allows semi-quantitative assessment of complex II and complex IV activities, but there is no validated histochemical assay to assess complex I activity which is frequently affected in mitochondrial pathology. To help improve the diagnosis of mitochondrial disease and to study the mechanisms underlying mitochondrial abnormalities in disease, we have developed a quadruple immunofluorescent technique enabling the quantification of key respiratory chain subunits of complexes I and IV, together with an indicator of mitochondrial mass and a cell membrane marker. This assay gives precise and objective quantification of protein abundance in large numbers of individual muscle fibres. By assessing muscle biopsies from subjects with a range of different mitochondrial genetic defects we have demonstrated that specific genotypes exhibit distinct biochemical signatures in muscle, providing evidence for the diagnostic use of the technique, as well as insight into the underlying molecular pathology. Stringent testing for reproducibility and sensitivity confirms the potential value of the technique for mechanistic studies of disease and in the evaluation of therapeutic approaches. [less ▲]

Detailed reference viewed: 79 (19 UL)
Peer Reviewed
See detailGenome-wide association study in musician's dystonia: a risk variant at the arylsulfatase G locus?
Lohmann, Katja; Schmidt, Alexander; Schillert, Arne et al

in Movement disorders : official journal of the Movement Disorder Society (2014), 29(7), 921-7

Musician's dystonia (MD) affects 1% to 2% of professional musicians and frequently terminates performance careers. It is characterized by loss of voluntary motor control when playing the instrument ... [more ▼]

Musician's dystonia (MD) affects 1% to 2% of professional musicians and frequently terminates performance careers. It is characterized by loss of voluntary motor control when playing the instrument. Little is known about genetic risk factors, although MD or writer's dystonia (WD) occurs in relatives of 20% of MD patients. We conducted a 2-stage genome-wide association study in whites. Genotypes at 557,620 single-nucleotide polymorphisms (SNPs) passed stringent quality control for 127 patients and 984 controls. Ten SNPs revealed P < 10(-5) and entered the replication phase including 116 MD patients and 125 healthy musicians. A genome-wide significant SNP (P < 5 x 10(-8) ) was also genotyped in 208 German or Dutch WD patients, 1,969 Caucasian, Spanish, and Japanese patients with other forms of focal or segmental dystonia as well as in 2,233 ethnically matched controls. Genome-wide significance with MD was observed for an intronic variant in the arylsulfatase G (ARSG) gene (rs11655081; P = 3.95 x 10(-9) ; odds ratio [OR], 4.33; 95% confidence interval [CI], 2.66-7.05). rs11655081 was also associated with WD (P = 2.78 x 10(-2) ) but not with any other focal or segmental dystonia. The allele frequency of rs11655081 varies substantially between different populations. The population stratification in our sample was modest (lambda = 1.07), but the effect size may be overestimated. Using a small but homogenous patient sample, we provide data for a possible association of ARSG with MD. The variant may also contribute to the risk of WD, a form of dystonia that is often found in relatives of MD patients. [less ▲]

Detailed reference viewed: 155 (12 UL)
Peer Reviewed
See detailPINK1 loss-of-function mutations affect mitochondrial complex I activity via NdufA10 ubiquinone uncoupling.
Morais, Vanessa A.; Haddad, Dominik; Craessaerts, Katleen et al

in Science (New York, N.Y.) (2014), 344(6180), 203-7

Under resting conditions, Pink1 knockout cells and cells derived from patients with PINK1 mutations display a loss of mitochondrial complex I reductive activity, causing a decrease in the mitochondrial ... [more ▼]

Under resting conditions, Pink1 knockout cells and cells derived from patients with PINK1 mutations display a loss of mitochondrial complex I reductive activity, causing a decrease in the mitochondrial membrane potential. Analyzing the phosphoproteome of complex I in liver and brain from Pink1(-/-) mice, we found specific loss of phosphorylation of serine-250 in complex I subunit NdufA10. Phosphorylation of serine-250 was needed for ubiquinone reduction by complex I. Phosphomimetic NdufA10 reversed Pink1 deficits in mouse knockout cells and rescued mitochondrial depolarization and synaptic transmission defects in pink(B9)-null mutant Drosophila. Complex I deficits and adenosine triphosphate synthesis were also rescued in cells derived from PINK1 patients. Thus, this evolutionary conserved pathway may contribute to the pathogenic cascade that eventually leads to Parkinson's disease in patients with PINK1 mutations. [less ▲]

Detailed reference viewed: 102 (4 UL)
Peer Reviewed
See detailTHAP1, the gene mutated in DYT6 dystonia, autoregulates its own expression.
Erogullari, Alev; Hollstein, Ronja; Seibler, Philip et al

in Biochimica et biophysica acta (2014), 1839(11), 1196-204

THAP1 encodes a transcription factor but its regulation is largely elusive. TOR1A was shown to be repressed by THAP1 in vitro. Notably, mutations in both of these genes lead to dystonia (DYT6 or DYT1 ... [more ▼]

THAP1 encodes a transcription factor but its regulation is largely elusive. TOR1A was shown to be repressed by THAP1 in vitro. Notably, mutations in both of these genes lead to dystonia (DYT6 or DYT1). Surprisingly, expressional changes of TOR1A in THAP1 mutation carriers have not been detected indicating additional levels of regulation. Here, we investigated whether THAP1 is able to autoregulate its own expression. Using in-silico prediction, luciferase reporter gene assays, and (quantitative) chromatin immunoprecipitation (ChIP), we defined the THAP1 minimal promoter to a 480bp-fragment and demonstrated specific binding of THAP1 to this region which resulted in repression of the THAP1 promoter. This autoregulation was disturbed by different DYT6-causing mutations. Two mutants (Ser6Phe, Arg13His) were shown to be less stable than wildtype THAP1 adding to the effect of reduced binding to the THAP1 promoter. Overexpressed THAP1 is preferably degraded through the proteasome. Notably, endogenous THAP1 expression was significantly reduced in cells overexpressing wildtype THAP1 as demonstrated by quantitative PCR. In contrast, higher THAP1 levels were detected in induced pluripotent stem cell (iPS)-derived neurons from THAP1 mutation carriers. Thus, we identified a feedback-loop in the regulation of THAP1 expression and demonstrated that mutant THAP1 leads to higher THAP1 expression levels. This compensatory autoregulation may contribute to the mean age at onset in the late teen years or even reduced penetrance in some THAP1 mutation carriers. [less ▲]

Detailed reference viewed: 63 (4 UL)
Peer Reviewed
See detailQuantitative quadruple-label immunofluorescence of mitochondrial and cytoplasmic proteins in single neurons from human midbrain tissue.
Grünewald, Anne UL; Lax, Nichola Z.; Rocha, Mariana C. et al

in Journal of neuroscience methods (2014), 232

BACKGROUND: Respiratory chain (RC) deficiencies are found in primary mtDNA diseases. Focal RC defects are also associated with ageing and neurodegenerative disorders, e.g. in substantia nigra (SN) neurons ... [more ▼]

BACKGROUND: Respiratory chain (RC) deficiencies are found in primary mtDNA diseases. Focal RC defects are also associated with ageing and neurodegenerative disorders, e.g. in substantia nigra (SN) neurons from Parkinson's disease patients. In mitochondrial disease and ageing, mtDNA mutational loads vary considerably between neurons necessitating single cell-based assessment of RC deficiencies. Evaluating the full extent of RC deficiency within SN neurons is challenging because their size precludes investigations in serial sections. We developed an assay to measure RC abnormalities in individual SN neurons using quadruple immunofluorescence. NEW METHOD: Using antibodies against subunits of complex I (CI) and IV, porin and tyrosine hydroxylase together with IgG subtype-specific fluorescent labelled secondary antibodies, we quantified the expression of CI and CIV compared to mitochondrial mass in dopaminergic neurons. CI:porin and CIV:porin ratios were determined relative to a standard control. RESULTS: Quantification of expression of complex subunits in midbrain sections from patients with mtDNA disease and known RC deficiencies consistently showed reduced CI:porin and/or CIV:porin ratios. COMPARISON WITH EXISTING METHOD(S): The standard histochemical method to investigate mitochondrial dysfunction, the cytochrome c oxidase/succinate dehydrogenase assay, measures CIV and CII activities. To also study CI in a patient, immunohistology in additional sections, i.e. in different neurons, is required. Our method allows correlation of the expression of CI, CIV and mitochondrial mass at a single cell level. CONCLUSION: Quantitative quadruple-label immunofluorescence is a reliable tool to measure RC deficiencies in individual neurons that will enable new insights in the molecular mechanisms underlying inherited and acquired mitochondrial dysfunction. [less ▲]

Detailed reference viewed: 75 (5 UL)
Peer Reviewed
See detailDoes uncoupling protein 2 expression qualify as marker of disease status in LRRK2-associated Parkinson's disease?
Grünewald, Anne UL; Arns, Bjorn; Meier, Britta et al

in Antioxidants & redox signaling (2014), 20(13), 1955-60

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common known genetic cause of late-onset Parkinson's disease (PD). However, the penetrance of the disease is below 50% at 60 years of age ... [more ▼]

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common known genetic cause of late-onset Parkinson's disease (PD). However, the penetrance of the disease is below 50% at 60 years of age. LRRK2 is associated with the mitochondrial membrane, and mutant forms impair the function of the organelle and autophagosome clearance in human cells, including induced pluripotent stem cell-derived neurons. Elevated expression of uncoupling proteins has been identified as the cause of mitochondrial depolarization in human fibroblasts with G2019S LRRK2. To identify factors that contribute to the penetrance of LRRK2 mutations, we studied respiratory chain function, markers of mitochondrial uncoupling, oxidative stress, and autophagy in fibroblasts from affected and unaffected carriers of the G2019S mutation. Independent of disease status, all mutation carriers showed reduced mitochondrial membrane potential, increased proton leakage, and more fragmented mitochondria. However, a significant increase in the expression of uncoupling protein 2 (UCP2) was only detected in affected individuals with the G2019S mutation in LRRK2. Since oxidative stress and autophagic markers were selectively increased in some of the PD patients, we hypothesize that UCP2 expression is upregulated in response to elevated reactive oxygen species generation in affected mutation carriers and that UCP2 mRNA levels might, therefore, serve as markers of disease status in LRRK2-associated PD. [less ▲]

Detailed reference viewed: 37 (6 UL)
Peer Reviewed
See detailBee venom and its component apamin as neuroprotective agents in a Parkinson disease mouse model.
Alvarez-Fischer, Daniel; Noelker, Carmen; Vulinovic, Franca et al

in PloS one (2013), 8(4), 61700

Bee venom has recently been suggested to possess beneficial effects in the treatment of Parkinson disease (PD). For instance, it has been observed that bilateral acupoint stimulation of lower hind limbs ... [more ▼]

Bee venom has recently been suggested to possess beneficial effects in the treatment of Parkinson disease (PD). For instance, it has been observed that bilateral acupoint stimulation of lower hind limbs with bee venom was protective in the acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. In particular, a specific component of bee venom, apamin, has previously been shown to have protective effects on dopaminergic neurons in vitro. However, no information regarding a potential protective action of apamin in animal models of PD is available to date. The specific goals of the present study were to (i) establish that the protective effect of bee venom for dopaminergic neurons is not restricted to acupoint stimulation, but can also be observed using a more conventional mode of administration and to (ii) demonstrate that apamin can mimic the protective effects of a bee venom treatment on dopaminergic neurons. Using the chronic mouse model of MPTP/probenecid, we show that bee venom provides sustained protection in an animal model that mimics the chronic degenerative process of PD. Apamin, however, reproduced these protective effects only partially, suggesting that other components of bee venom enhance the protective action of the peptide. [less ▲]

Detailed reference viewed: 62 (4 UL)