References of "Goldwurm, Stefano"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailThe GBAP1 pseudogene acts as a ceRNA for the glucocerebrosidase gene GBA by sponging miR-22-3p.
Straniero, Letizia; Rimoldi, Valeria; Samarani, Maura et al

in Scientific reports (2017), 7(1), 12702

Mutations in the GBA gene, encoding lysosomal glucocerebrosidase, represent the major predisposing factor for Parkinson's disease (PD), and modulation of the glucocerebrosidase activity is an emerging PD ... [more ▼]

Mutations in the GBA gene, encoding lysosomal glucocerebrosidase, represent the major predisposing factor for Parkinson's disease (PD), and modulation of the glucocerebrosidase activity is an emerging PD therapy. However, little is known about mechanisms regulating GBA expression. We explored the existence of a regulatory network involving GBA, its expressed pseudogene GBAP1, and microRNAs. The high level of sequence identity between GBA and GBAP1 makes the pseudogene a promising competing-endogenous RNA (ceRNA), functioning as a microRNA sponge. After selecting microRNAs potentially targeting both transcripts, we demonstrated that miR-22-3p binds to and down-regulates GBA and GBAP1, and decreases their endogenous mRNA levels up to 70%. Moreover, over-expression of GBAP1 3'-untranslated region was able to sequester miR-22-3p, thus increasing GBA mRNA and glucocerebrosidase levels. The characterization of GBAP1 splicing identified multiple out-of-frame isoforms down-regulated by the nonsense-mediated mRNA decay, suggesting that GBAP1 levels and, accordingly, its ceRNA effect, are significantly modulated by this degradation process. Using skin-derived induced pluripotent stem cells of PD patients with GBA mutations and controls, we observed a significant GBA up-regulation during dopaminergic differentiation, paralleled by down-regulation of miR-22-3p. Our results describe the first microRNA controlling GBA and suggest that the GBAP1 non-coding RNA functions as a GBA ceRNA. [less ▲]

Detailed reference viewed: 45 (0 UL)
Full Text
Peer Reviewed
See detailAlpha-synuclein repeat variants and survival in Parkinson's disease.
Chung, Sun Ju; Biernacka, Joanna M.; Armasu, Sebastian M. et al

in Movement disorders : official journal of the Movement Disorder Society (2014)

OBJECTIVES: To determine whether alpha-synuclein dinucleotide repeat (REP1) genotypes are associated with survival in Parkinson's disease (PD). METHODS: Investigators from the Genetic Epidemiology of ... [more ▼]

OBJECTIVES: To determine whether alpha-synuclein dinucleotide repeat (REP1) genotypes are associated with survival in Parkinson's disease (PD). METHODS: Investigators from the Genetic Epidemiology of Parkinson's Disease Consortium provided REP1 genotypes and baseline and follow-up clinical data for cases. The primary outcome was time to death. Cox proportional hazards regression models were used to assess the association of REP1 genotypes with survival. RESULTS: Twenty-one sites contributed data for 6,154 cases. There was no significant association between alpha-synuclein REP1 genotypes and survival in PD. However, there was a significant association between REP1 genotypes and age at onset of PD (hazard ratio: 1.06; 95% confidence interval: 1.01-1.10; P value = 0.01). CONCLUSIONS: In our large consortium study, alpha-synuclein REP1 genotypes were not associated with survival in PD. Further studies of alpha-synuclein's role in disease progression and long-term outcomes are needed. (c) 2014 International Parkinson and Movement Disorder Society. [less ▲]

Detailed reference viewed: 120 (5 UL)
Full Text
Peer Reviewed
See detailSingle-cell expression profiling of dopaminergic neurons combined with association analysis identifies pyridoxal kinase as Parkinson's disease gene.
Elstner, Matthias; Morris, Christopher M.; Heim, Katharina et al

in Annals of neurology (2009), 66(6), 792-8

OBJECTIVE: The etiology of Parkinson disease (PD) is complex and multifactorial, with hereditary and environmental factors contributing. Monogenic forms have provided molecular clues to disease mechanisms ... [more ▼]

OBJECTIVE: The etiology of Parkinson disease (PD) is complex and multifactorial, with hereditary and environmental factors contributing. Monogenic forms have provided molecular clues to disease mechanisms but genetic modifiers of idiopathic PD are still to be determined. METHODS: We carried out whole-genome expression profiling of isolated human substantia nigra (SN) neurons from patients with PD vs. controls followed by association analysis of tagging single-nucleotide polymorphisms (SNPs) in differentially regulated genes. Association was investigated in a German PD sample and confirmed in Italian and British cohorts. RESULTS: We identified four differentially expressed genes located in PD candidate pathways, ie, MTND2 (mitochondrial, p = 7.14 x 10(-7)), PDXK (vitamin B6/dopamine metabolism, p = 3.27 x 10(-6)), SRGAP3 (axon guidance, p = 5.65 x 10(-6)), and TRAPPC4 (vesicle transport, p = 5.81 x 10(-6)). We identified a DNA variant (rs2010795) in PDXK associated with an increased risk of PD in the German cohort (p = 0.00032). This association was confirmed in the British (p = 0.028) and Italian (p = 0.0025) cohorts individually and reached a combined value of p = 1.2 x 10(-7) (odds ratio [OR], 1.3; 95% confidence interval [CI], 1.18-1.44). INTERPRETATION: We provide an example of how microgenomic genome-wide expression studies in combination with association analysis can aid to identify genetic modifiers in neurodegenerative disorders. The detection of a genetic variant in PDXK, together with evidence accumulating from clinical studies, emphasize the impact of vitamin B6 status and metabolism on disease risk and therapy in PD. [less ▲]

Detailed reference viewed: 97 (4 UL)
Peer Reviewed
See detailBiological effects of the PINK1 c.1366C>T mutation: implications in Parkinson disease pathogenesis.
Grünewald, Anne UL; Breedveld, Guido J.; Lohmann-Hedrich, Katja et al

in Neurogenetics (2007), 8(2), 103-9

PINK1 gene mutations are a cause of recessively inherited, early-onset Parkinson's disease. In some patients, a single heterozygous mutation has been identified, including the recurrent c.1366C>T ... [more ▼]

PINK1 gene mutations are a cause of recessively inherited, early-onset Parkinson's disease. In some patients, a single heterozygous mutation has been identified, including the recurrent c.1366C>T transition. The interpretation of this finding remains controversial. Furthermore, the c.1366C>T mutation is associated with lower levels of PINK1 transcript, raising the question of whether mRNA levels correlate with the clinical status. We sequenced genomic DNA and copy DNA (cDNA) from 20 subjects carrying the c.1366C>T mutation in the homozygous (n = 5) or heterozygous (n = 15) state. In 17 mutation carriers, messenger RNA (mRNA) was quantified by real-time PCR using four different assays (PINK1 exon 5-6 or exon 7-8 relative to control genes SDHA or YWHAZ). Genomic sequencing confirmed the presence and zygosity of PINK1 mutations. cDNA sequencing in heterozygous mutation carriers revealed a strong wild-type and a much weaker or almost absent mutant signal, whereas in the homozygous patients, only the mutant signal was detected. Homozygous and heterozygous carriers showed PINK1 mRNA levels relative to a reference gene in the range of 0.1-0.2 and 0.5-0.6, respectively, compared with values of 0.9-1.0 in mutation-negative individuals. Treatment of lymphoblasts from a heterozygous mutation carrier with cycloheximide markedly increased the mutant transcript signal. We conclude that the recurrent PINK1 c.1366C>T mutation exerts a major effect at the mRNA level (80-90% reduction), most likely via nonsense-mediated mRNA decay. The absence of correlation between PINK1 mRNA levels and clinical status in heterozygous mutation carriers suggests that other genetic or environmental factors play a role in determining the phenotypic variability associated with the c.1366C>T mutation. [less ▲]

Detailed reference viewed: 53 (5 UL)