References of "Glusman, Gustavo"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailA novel Fanconi anemia subtype associated with a dominant-negative mutation in RAD51
Ameziane, Najim; May, Patrick UL; Van de Vrugt, Henri J. et al

in Nature Communications (2015), 6(8829),

Fanconi anemia (FA) is a hereditary disease featuring hypersensitivity to DNA cross-linker-induced chromosomal instability in association with developmental abnormalities, bone marrow failure and a strong ... [more ▼]

Fanconi anemia (FA) is a hereditary disease featuring hypersensitivity to DNA cross-linker-induced chromosomal instability in association with developmental abnormalities, bone marrow failure and a strong predisposition to cancer. 17 FA disease genes have been reported, all of which act in a recessive mode of inheritance. Here we report on a de novo g.41022153G>A; p.Ala293Thr (NM_002875) missense mutation in one allele of the homologous recombination DNA repair gene RAD51 in an FA-like patient. This heterozygous mutation causes a novel FA subtype, “FA-R”, which appears to be the first subtype of FA caused by a dominant-negative mutation. The patient, who features microcephaly and mental retardation, has reached adulthood without the typical bone marrow failure and pediatric cancers. Together with the recent reports on RAD51-associated congenital mirror movement disorders our results point to an important role for RAD51-mediated homologous recombination in neurodevelopment, in addition to DNA repair and cancer susceptibility. [less ▲]

Detailed reference viewed: 159 (20 UL)
Full Text
Peer Reviewed
See detailSystems genomics evaluation of the SH-SY5Y neuroblastoma cell line as a model for Parkinson’s disease
Krishna, Abhimanyu UL; Biryukov, Maria UL; Trefois, Christophe UL et al

in BMC Genomics (2014), 15(1154),

Background: The human neuroblastoma cell line, SH-SY5Y, is a commonly used cell line in studies related to neurotoxicity, oxidative stress, and neurodegenerative diseases. Although this cell line is often ... [more ▼]

Background: The human neuroblastoma cell line, SH-SY5Y, is a commonly used cell line in studies related to neurotoxicity, oxidative stress, and neurodegenerative diseases. Although this cell line is often used as a cellular model for Parkinson’s disease, the relevance of this cellular model in the context of Parkinson’s disease (PD) and other neurodegenerative diseases has not yet been systematically evaluated. Results: We have used a systems genomics approach to characterize the SH-SY5Y cell line using whole-genome sequencing to determine the genetic content of the cell line and used transcriptomics and proteomics data to determine molecular correlations. Further, we integrated genomic variants using a network analysis approach to evaluate the suitability of the SH-SY5Y cell line for perturbation experiments in the context of neurodegenerative diseases, including PD. Conclusions: The systems genomics approach showed consistency across different biological levels (DNA, RNA and protein concentrations). Most of the genes belonging to the major Parkinson’s disease pathways and modules were intact in the SH-SY5Y genome. Specifically, each analysed gene related to PD has at least one intact copy in SH-SY5Y. The disease-specific network analysis approach ranked the genetic integrity of SH-SY5Y as higher for PD than for Alzheimer’s disease but lower than for Huntington’s disease and Amyotrophic Lateral Sclerosis for loss of function perturbation experiments. [less ▲]

Detailed reference viewed: 180 (25 UL)
Full Text
Peer Reviewed
See detailMutations in STX1B, encoding a presynaptic protein, cause fever-associated epilepsy syndromes
Schubert, Julian; Siekierska, Aleksandra; Langlois, Melanie UL et al

in Nature Genetics (2014), 46(12), 1327-32

Febrile seizures affect 2–4% of all children1 and have a strong genetic component2. Recurrent mutations in three main genes (SCN1A, SCN1B and GABRG2)3, 4, 5 have been identified that cause febrile ... [more ▼]

Febrile seizures affect 2–4% of all children1 and have a strong genetic component2. Recurrent mutations in three main genes (SCN1A, SCN1B and GABRG2)3, 4, 5 have been identified that cause febrile seizures with or without epilepsy. Here we report the identification of mutations in STX1B, encoding syntaxin-1B6, that are associated with both febrile seizures and epilepsy. Whole-exome sequencing in independent large pedigrees7, 8 identified cosegregating STX1B mutations predicted to cause an early truncation or an in-frame insertion or deletion. Three additional nonsense or missense mutations and a de novo microdeletion encompassing STX1B were then identified in 449 familial or sporadic cases. Video and local field potential analyses of zebrafish larvae with antisense knockdown of stx1b showed seizure-like behavior and epileptiform discharges that were highly sensitive to increased temperature. Wild-type human syntaxin-1B but not a mutated protein rescued the effects of stx1b knockdown in zebrafish. Our results thus implicate STX1B and the presynaptic release machinery in fever-associated epilepsy syndromes. [less ▲]

Detailed reference viewed: 330 (103 UL)
Full Text
Peer Reviewed
See detailA unified test of linkage analysis and rare-variant association for analysis of pedigree sequence data.
Hu, Hao; Roach, Jared C.; Coon, Hilary et al

in Nature Biotechnology (2014), 32(7), 663-669

High-throughput sequencing of related individuals has become an important tool for studying human disease. However, owing to technical complexity and lack of available tools, most pedigree-based ... [more ▼]

High-throughput sequencing of related individuals has become an important tool for studying human disease. However, owing to technical complexity and lack of available tools, most pedigree-based sequencing studies rely on an ad hoc combination of suboptimal analyses. Here we present pedigree-VAAST (pVAAST), a disease-gene identification tool designed for high-throughput sequence data in pedigrees. pVAAST uses a sequence-based model to perform variant and gene-based linkage analysis. Linkage information is then combined with functional prediction and rare variant case-control association information in a unified statistical framework. pVAAST outperformed linkage and rare-variant association tests in simulations and identified disease-causing genes from whole-genome sequence data in three human pedigrees with dominant, recessive and de novo inheritance patterns. The approach is robust to incomplete penetrance and locus heterogeneity and is applicable to a wide variety of genetic traits. pVAAST maintains high power across studies of monogenic, high-penetrance phenotypes in a single pedigree to highly polygenic, common phenotypes involving hundreds of pedigrees. [less ▲]

Detailed reference viewed: 68 (2 UL)
Full Text
Peer Reviewed
See detailChromosomal haplotypes by genetic phasing of human families
Roach, Jared C.; Glusman, Gustavo; Hubley, Robert et al

in American Journal of Human Genetics (2011), 89(3), 382-397

Assignment of alleles to haplotypes for nearly all the variants on all chromosomes can be performed by genetic analysis of a nuclear family with three or more children. Whole-genome sequence data enable ... [more ▼]

Assignment of alleles to haplotypes for nearly all the variants on all chromosomes can be performed by genetic analysis of a nuclear family with three or more children. Whole-genome sequence data enable deterministic phasing of nearly all sequenced alleles by permitting assignment of recombinations to precise chromosomal positions and specific meioses. We demonstrate this process of genetic phasing on two families each with four children. We generate haplotypes for all of the children and their parents; these haplotypes span all genotyped positions, including rare variants. Misassignments of phase between variants (switch errors) are nearly absent. Our algorithm can also produce multimegabase haplotypes for nuclear families with just two children and can handle families with missing individuals. We implement our algorithm in a suite of software scripts (Haploscribe). Haplotypes and family genome sequences will become increasingly important for personalized medicine and for fundamental biology. [less ▲]

Detailed reference viewed: 55 (2 UL)
Full Text
Peer Reviewed
See detailCandidate mutations for early-onset lung cancer by family genome sequencing
Simeonidis, Vangelis UL; Roach, Jared; Brunkow, Mary et al

Poster (2011, July)

Early-onset lung cancer has been studied as a rare, but distinct, sub-type of lung cancer. Genome-wide association studies (GWAS) have linked several genes with this form of malignancy. We sequenced the ... [more ▼]

Early-onset lung cancer has been studied as a rare, but distinct, sub-type of lung cancer. Genome-wide association studies (GWAS) have linked several genes with this form of malignancy. We sequenced the genomes of a family quartet in which one of the offspring was diagnosed with early-onset lung cancer at about 48 years of age. The family has a history of heavy smoking and the father had in the past been diagnosed with head and neck cancer. The DNA source was blood, which leads us to concentrate our analysis on Mendelian inheritance models. To make the inheritance pattern explicit, we establish the parental origin of the offspring’s genomes through phasing of their chromosomes. This helps identify whether mutations in the proband came from the father or the mother. More than 18 million sequence variants were initially identified in the proband through comparison to the hg19 reference genome. We reduce this list to fewer than 200 potentially functional variants (e.g. single nucleotide variations and short indels) present in the genomes of the proband and at least one parent, by applying a series of filters. We refine the list of candidate mutations further by comparison to gene candidates from GWAS studies and genes that are mutated in lung cancer tissue as recorded by The Cancer Genome Atlas. The results of our analysis are discussed and conclusions about possible causative mutations for early-onset lung cancer are drawn. [less ▲]

Detailed reference viewed: 83 (1 UL)