References of "Gelinas, Richard"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailA novel Fanconi anemia subtype associated with a dominant-negative mutation in RAD51
Ameziane, Najim; May, Patrick UL; Van de Vrugt, Henri J. et al

in Nature Communications (2015), 6(8829),

Fanconi anemia (FA) is a hereditary disease featuring hypersensitivity to DNA cross-linker-induced chromosomal instability in association with developmental abnormalities, bone marrow failure and a strong ... [more ▼]

Fanconi anemia (FA) is a hereditary disease featuring hypersensitivity to DNA cross-linker-induced chromosomal instability in association with developmental abnormalities, bone marrow failure and a strong predisposition to cancer. 17 FA disease genes have been reported, all of which act in a recessive mode of inheritance. Here we report on a de novo g.41022153G>A; p.Ala293Thr (NM_002875) missense mutation in one allele of the homologous recombination DNA repair gene RAD51 in an FA-like patient. This heterozygous mutation causes a novel FA subtype, “FA-R”, which appears to be the first subtype of FA caused by a dominant-negative mutation. The patient, who features microcephaly and mental retardation, has reached adulthood without the typical bone marrow failure and pediatric cancers. Together with the recent reports on RAD51-associated congenital mirror movement disorders our results point to an important role for RAD51-mediated homologous recombination in neurodevelopment, in addition to DNA repair and cancer susceptibility. [less ▲]

Detailed reference viewed: 149 (20 UL)
Full Text
Peer Reviewed
See detailCandidate mutations for early-onset lung cancer by family genome sequencing
Simeonidis, Vangelis UL; Roach, Jared; Brunkow, Mary et al

Poster (2011, July)

Early-onset lung cancer has been studied as a rare, but distinct, sub-type of lung cancer. Genome-wide association studies (GWAS) have linked several genes with this form of malignancy. We sequenced the ... [more ▼]

Early-onset lung cancer has been studied as a rare, but distinct, sub-type of lung cancer. Genome-wide association studies (GWAS) have linked several genes with this form of malignancy. We sequenced the genomes of a family quartet in which one of the offspring was diagnosed with early-onset lung cancer at about 48 years of age. The family has a history of heavy smoking and the father had in the past been diagnosed with head and neck cancer. The DNA source was blood, which leads us to concentrate our analysis on Mendelian inheritance models. To make the inheritance pattern explicit, we establish the parental origin of the offspring’s genomes through phasing of their chromosomes. This helps identify whether mutations in the proband came from the father or the mother. More than 18 million sequence variants were initially identified in the proband through comparison to the hg19 reference genome. We reduce this list to fewer than 200 potentially functional variants (e.g. single nucleotide variations and short indels) present in the genomes of the proband and at least one parent, by applying a series of filters. We refine the list of candidate mutations further by comparison to gene candidates from GWAS studies and genes that are mutated in lung cancer tissue as recorded by The Cancer Genome Atlas. The results of our analysis are discussed and conclusions about possible causative mutations for early-onset lung cancer are drawn. [less ▲]

Detailed reference viewed: 81 (1 UL)