References of "Gawron, Piotr"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailMINERVA—a platform for visualization and curation of molecular interaction networks
Gawron, Piotr; Ostaszewski, Marek UL; Satagopam, Venkata UL et al

in NPJ Systems Biology and Applications (2016)

Our growing knowledge about various molecular mechanisms is becoming increasingly more structured and accessible. Different repositories of molecular interactions and available literature enable ... [more ▼]

Our growing knowledge about various molecular mechanisms is becoming increasingly more structured and accessible. Different repositories of molecular interactions and available literature enable construction of focused and high-quality molecular interaction networks. Novel tools for curation and exploration of such networks are needed, in order to foster the development of a systems biology environment. In particular, solutions for visualization, annotation and data cross-linking will facilitate usage of network-encoded knowledge in biomedical research. To this end we developed the MINERVA (Molecular Interaction NEtwoRks VisuAlization) platform, a standalone webservice supporting curation, annotation and visualization of molecular interaction networks in Systems Biology Graphical Notation (SBGN)-compliant format. MINERVA provides automated content annotation and verification for improved quality control. The end users can explore and interact with hosted networks, and provide direct feedback to content curators. MINERVA enables mapping drug targets or overlaying experimental data on the visualized networks. Extensive export functions enable downloading areas of the visualized networks as SBGN-compliant models for efficient reuse of hosted networks. The software is available under Affero GPL 3.0 as a Virtual Machine snapshot, Debian package and Docker instance at http://r3lab.uni.lu/web/minerva-website/. We believe that MINERVA is an important contribution to systems biology community, as its architecture enables set-up of locally or globally accessible SBGN-oriented repositories of molecular interaction networks. Its functionalities allow overlay of multiple information layers, facilitating exploration of content and interpretation of data. Moreover, annotation and verification workflows of MINERVA improve the efficiency of curation of networks, allowing life-science researchers to better engage in development and use of biomedical knowledge repositories. [less ▲]

Detailed reference viewed: 211 (12 UL)
Full Text
Peer Reviewed
See detailIntegration and Visualization of Translational Medicine Data for Better Understanding of Human Diseases.
Satagopam, Venkata UL; Gu, Wei UL; Eifes, Serge et al

in Big data (2016), 4(2), 97-108

Translational medicine is a domain turning results of basic life science research into new tools and methods in a clinical environment, for example, as new diagnostics or therapies. Nowadays, the process ... [more ▼]

Translational medicine is a domain turning results of basic life science research into new tools and methods in a clinical environment, for example, as new diagnostics or therapies. Nowadays, the process of translation is supported by large amounts of heterogeneous data ranging from medical data to a whole range of -omics data. It is not only a great opportunity but also a great challenge, as translational medicine big data is difficult to integrate and analyze, and requires the involvement of biomedical experts for the data processing. We show here that visualization and interoperable workflows, combining multiple complex steps, can address at least parts of the challenge. In this article, we present an integrated workflow for exploring, analysis, and interpretation of translational medicine data in the context of human health. Three Web services-tranSMART, a Galaxy Server, and a MINERVA platform-are combined into one big data pipeline. Native visualization capabilities enable the biomedical experts to get a comprehensive overview and control over separate steps of the workflow. The capabilities of tranSMART enable a flexible filtering of multidimensional integrated data sets to create subsets suitable for downstream processing. A Galaxy Server offers visually aided construction of analytical pipelines, with the use of existing or custom components. A MINERVA platform supports the exploration of health and disease-related mechanisms in a contextualized analytical visualization system. We demonstrate the utility of our workflow by illustrating its subsequent steps using an existing data set, for which we propose a filtering scheme, an analytical pipeline, and a corresponding visualization of analytical results. The workflow is available as a sandbox environment, where readers can work with the described setup themselves. Overall, our work shows how visualization and interfacing of big data processing services facilitate exploration, analysis, and interpretation of translational medicine data. [less ▲]

Detailed reference viewed: 173 (20 UL)