References of "Gao, Jun 50025911"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailShould You Consider Adware as Malware in Your Study?
Gao, Jun UL; Li, Li; Kong, Pingfan UL et al

in 26th edition of the IEEE International Conference on Software Analysis, Evolution and Reengineering (2019, February 24)

Empirical validations of research approaches eventually require a curated ground truth. In studies related to Android malware, such a ground truth is built by leveraging Anti-Virus (AV) scanning reports ... [more ▼]

Empirical validations of research approaches eventually require a curated ground truth. In studies related to Android malware, such a ground truth is built by leveraging Anti-Virus (AV) scanning reports which are often provided free through online services such as VirusTotal. Unfortunately, these reports do not offer precise information for appropriately and uniquely assigning classes to samples in app datasets: AV engines indeed do not have a consensus on specifying information in labels. Furthermore, labels often mix information related to families, types, etc. In particular, the notion of “adware” is currently blurry when it comes to maliciousness. There is thus a need to thoroughly investigate cases where adware samples can actually be associated with malware (e.g., because they are tagged as adware but could be considered as malware as well). In this work, we present a large-scale analytical study of Android adware samples to quantify to what extent “adware should be considered as malware”. Our analysis is based on the Androzoo repository of 5 million apps with associated AV labels and leverages a state-of-the-art label harmonization tool to infer the malicious type of apps before confronting it against the ad families that each adware app is associated with. We found that all adware families include samples that are actually known to implement specific malicious behavior types. Up to 50% of samples in an ad family could be flagged as malicious. Overall the study demonstrates that adware is not necessarily benign. [less ▲]

Detailed reference viewed: 119 (12 UL)
Full Text
Peer Reviewed
See detailAutomated Testing of Android Apps: A Systematic Literature Review
Kong, Pingfan UL; Li, Li; Gao, Jun UL et al

in IEEE Transactions on Reliability (2018)

Automated testing of Android apps is essential for app users, app developers and market maintainer communities alike. Given the widespread adoption of Android and the specificities of its development ... [more ▼]

Automated testing of Android apps is essential for app users, app developers and market maintainer communities alike. Given the widespread adoption of Android and the specificities of its development model, the literature has proposed various testing approaches for ensuring that not only functional requirements but also non-functional requirements are satisfied. In this paper, we aim at providing a clear overview of the state-of-the-art works around the topic of Android app testing, in an attempt to highlight the main trends, pinpoint the main methodologies applied and enumerate the challenges faced by the Android testing approaches as well as the directions where the community effort is still needed. To this end, we conduct a Systematic Literature Review (SLR) during which we eventually identified 103 relevant research papers published in leading conferences and journals until 2016. Our thorough examination of the relevant literature has led to several findings and highlighted the challenges that Android testing researchers should strive to address in the future. After that, we further propose a few concrete research directions where testing approaches are needed to solve recurrent issues in app updates, continuous increases of app sizes, as well as the Android ecosystem fragmentation. [less ▲]

Detailed reference viewed: 117 (22 UL)
Full Text
Peer Reviewed
See detailCharacterising Deprecated Android APIs
Li, Li; Gao, Jun UL; Bissyande, Tegawendé François D Assise UL et al

in 15th International Conference on Mining Software Repositories (MSR 2018) (2018, May)

Detailed reference viewed: 85 (6 UL)
Full Text
Peer Reviewed
See detailOn Vulnerability Evolution in Android Apps
Gao, Jun UL; Li, Li; Pingfan, Kong et al

Poster (2018)

Detailed reference viewed: 69 (22 UL)