References of "Fleming, Ronan MT 50001792"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailSystematic assessment of secondary bile acid metabolism in gut microbes reveals distinct metabolic capabilities in inflammatory bowel disease
Heinken, Almut Katrin UL; Ravcheev, Dmitry UL; Baldini, Federico UL et al

in Microbiome (2019)

Background The human gut microbiome performs important functions in human health and disease. A classic example for host-gut microbial co-metabolism is host biosynthesis of primary bile acids and their ... [more ▼]

Background The human gut microbiome performs important functions in human health and disease. A classic example for host-gut microbial co-metabolism is host biosynthesis of primary bile acids and their subsequent deconjugation and transformation by the gut microbiome. To understand these system-level host-microbe interactions, a mechanistic, multi-scale computational systems biology approach that integrates the different types of omic data is needed. Here, we use a systematic workflow to computationally model bile acid metabolism in gut microbes and microbial communities. Results Therefore, we first performed a comparative genomic analysis of bile acid deconjugation and biotransformation pathways in 693 human gut microbial genomes and expanded 232 curated genome-scale microbial metabolic reconstructions with the corresponding reactions (available at https://vmh.life). We then predicted the bile acid biotransformation potential of each microbe and in combination with other microbes. We found that each microbe could produce maximally six of the 13 secondary bile acids in silico, while microbial pairs could produce up to 12 bile acids, suggesting bile acid biotransformation being a microbial community task. To investigate the metabolic potential of a given microbiome, publicly available metagenomics data from healthy Western individuals, as well as inflammatory bowel disease patients and healthy controls, were mapped onto the genomes of the reconstructed strains. We constructed for each individual a large-scale personalized microbial community model that takes into account strain-level abundances. Using flux balance analysis, we found considerable variation in the potential to deconjugate and transform primary bile acids between the gut microbiomes of healthy individuals. Moreover, the microbiomes of pediatric inflammatory bowel disease patients were significantly depleted in their bile acid production potential compared with that of controls. The contributions of each strain to overall bile acid production potential across individuals were found to be distinct between inflammatory bowel disease patients and controls. Finally, bottlenecks limiting secondary bile acid production potential were identified in each microbiome model. Conclusions This large-scale modeling approach provides a novel way of analyzing metagenomics data to accelerate our understanding of the metabolic interactions between the host and gut microbiomes in health and diseases states. Our models and tools are freely available to the scientific community. [less ▲]

Detailed reference viewed: 48 (2 UL)
Full Text
Peer Reviewed
See detailThe Virtual Metabolic Human database: integrating human and gut microbiome metabolism with nutrition and disease
Noronha, Alberto UL; Modamio Chamarro, Jennifer UL; Jarosz, Yohan UL et al

in Nucleic Acids Research (2018)

A multitude of factors contribute to complex diseases and can be measured with ‘omics’ methods. Databases facilitate data interpretation for underlying mechanisms. Here, we describe the Virtual Metabolic ... [more ▼]

A multitude of factors contribute to complex diseases and can be measured with ‘omics’ methods. Databases facilitate data interpretation for underlying mechanisms. Here, we describe the Virtual Metabolic Human (VMH, www.vmh.life) database encapsulating current knowledge of human metabolism within five interlinked resources ‘Human metabolism’, ‘Gut microbiome’, ‘Disease’, ‘Nutrition’, and ‘ReconMaps’. The VMH captures 5180 unique metabolites, 17 730 unique reactions, 3695 human genes, 255 Mendelian diseases, 818 microbes, 632 685 microbial genes and 8790 food items. The VMH’s unique features are (i) the hosting of the metabolic reconstructions of human and gut microbes amenable for metabolic modeling; (ii) seven human metabolic maps for data visualization; (iii) a nutrition designer; (iv) a user-friendly webpage and application-programming interface to access its content; (v) user feedback option for community engagement and (vi) the connection of its entities to 57 other web resources. The VMH represents a novel, interdisciplinary database for data interpretation and hypothesis generation to the biomedical community. [less ▲]

Detailed reference viewed: 139 (22 UL)
Full Text
Peer Reviewed
See detailRecon3D enables a three-dimensional view of gene variation in human metabolism.
Brunk, Elizabeth; Sahoo, Swagatika; Zielinski, Daniel C. et al

in Nature biotechnology (2018), 36(3), 272-281

Genome-scale network reconstructions have helped uncover the molecular basis of metabolism. Here we present Recon3D, a computational resource that includes three-dimensional (3D) metabolite and protein ... [more ▼]

Genome-scale network reconstructions have helped uncover the molecular basis of metabolism. Here we present Recon3D, a computational resource that includes three-dimensional (3D) metabolite and protein structure data and enables integrated analyses of metabolic functions in humans. We use Recon3D to functionally characterize mutations associated with disease, and identify metabolic response signatures that are caused by exposure to certain drugs. Recon3D represents the most comprehensive human metabolic network model to date, accounting for 3,288 open reading frames (representing 17% of functionally annotated human genes), 13,543 metabolic reactions involving 4,140 unique metabolites, and 12,890 protein structures. These data provide a unique resource for investigating molecular mechanisms of human metabolism. Recon3D is available at http://vmh.life. [less ▲]

Detailed reference viewed: 160 (6 UL)
Full Text
Peer Reviewed
See detailCommunity-driven roadmap for integrated disease maps.
Ostaszewski, Marek UL; Gebel, Stephan UL; Kuperstein, Inna et al

in Briefings in bioinformatics (2018)

The Disease Maps Project builds on a network of scientific and clinical groups that exchange best practices, share information and develop systems biomedicine tools. The project aims for an integrated ... [more ▼]

The Disease Maps Project builds on a network of scientific and clinical groups that exchange best practices, share information and develop systems biomedicine tools. The project aims for an integrated, highly curated and user-friendly platform for disease-related knowledge. The primary focus of disease maps is on interconnected signaling, metabolic and gene regulatory network pathways represented in standard formats. The involvement of domain experts ensures that the key disease hallmarks are covered and relevant, up-to-date knowledge is adequately represented. Expert-curated and computer readable, disease maps may serve as a compendium of knowledge, allow for data-supported hypothesis generation or serve as a scaffold for the generation of predictive mathematical models. This article summarizes the 2nd Disease Maps Community meeting, highlighting its important topics and outcomes. We outline milestones on the roadmap for the future development of disease maps, including creating and maintaining standardized disease maps; sharing parts of maps that encode common human disease mechanisms; providing technical solutions for complexity management of maps; and Web tools for in-depth exploration of such maps. A dedicated discussion was focused on mathematical modeling approaches, as one of the main goals of disease map development is the generation of mathematically interpretable representations to predict disease comorbidity or drug response and to suggest drug repositioning, altogether supporting clinical decisions. [less ▲]

Detailed reference viewed: 70 (9 UL)
Full Text
Peer Reviewed
See detailQuantitative systems pharmacology and the personalized drug–microbiota–diet axis
Thiele, Ines UL; Clancy, Catherine UL; Heinken, Almut Katrin UL et al

in Current Opinion in Systems Biology (2017), 4

Precision medicine is an emerging paradigm that aims at maximizing the benefits and minimizing the adverse effects of drugs. Realistic mechanistic models are needed to understand and limit heterogeneity ... [more ▼]

Precision medicine is an emerging paradigm that aims at maximizing the benefits and minimizing the adverse effects of drugs. Realistic mechanistic models are needed to understand and limit heterogeneity in drug responses. While pharmacokinetic models describe in detail a drug's absorption and metabolism, they generally do not account for individual variations in response to environmental influences, in addition to genetic variation. For instance, the human gut microbiota metabolizes drugs and is modulated by diet, and it exhibits significant variation among individuals. However, the influence of the gut microbiota on drug failure or drug side effects is under-researched. Here, we review recent advances in computational modeling approaches that could contribute to a better, mechanism-based understanding of drug–microbiota–diet interactions and their contribution to individual drug responses. By integrating systems biology and quantitative systems pharmacology with microbiology and nutrition, the conceptually and technologically demand for novel approaches could be met to enable the study of individual variability, thereby providing breakthrough support for progress in precision medicine. [less ▲]

Detailed reference viewed: 182 (18 UL)
Full Text
Peer Reviewed
See detailEmbryonic development of selectively vulnerable neurons in Parkinson’s disease
Oliveira, Miguel UL; Balling, Rudi UL; Smidt, Marten et al

in NPJ Parkinson's Disease (2017), 3

A specific set of brainstem nuclei are susceptible to degeneration in Parkinson’s disease. We hypothesise that neuronal vulnerability reflects shared phenotypic characteristics that confer selective ... [more ▼]

A specific set of brainstem nuclei are susceptible to degeneration in Parkinson’s disease. We hypothesise that neuronal vulnerability reflects shared phenotypic characteristics that confer selective vulnerability to degeneration. Neuronal phenotypic specification is mainly the cumulative result of a transcriptional regulatory program that is active during the development. By manual curation of the developmental biology literature, we comprehensively reconstructed an anatomically resolved cellular developmental lineage for the adult neurons in five brainstem regions that are selectively vulnerable to degeneration in prodromal or early Parkinson’s disease. We synthesised the literature on transcription factors that are required to be active, or required to be inactive, in the development of each of these five brainstem regions, and at least two differentially vulnerable nuclei within each region. Certain transcription factors, e.g., Ascl1 and Lmx1b, seem to be required for specification of many brainstem regions that are susceptible to degeneration in early Parkinson’s disease. Some transcription factors can even distinguish between differentially vulnerable nuclei within the same brain region, e.g., Pitx3 is required for specification of the substantia nigra pars compacta, but not the ventral tegmental area. We do not suggest that Parkinson’s disease is a developmental disorder. In contrast, we consider identification of shared developmental trajectories as part of a broader effort to identify the molecular mechanisms that underlie the phenotypic features that are shared by selectively vulnerable neurons. Systematic in vivo assessment of fate determining transcription factors should be completed for all neuronal populations vulnerable to degeneration in early Parkinson’s disease. [less ▲]

Detailed reference viewed: 115 (11 UL)
Full Text
Peer Reviewed
See detailComparative evaluation of atom mapping algorithms for balanced metabolic reactions: application to Recon 3D
Preciat Gonzalez, German Andres UL; El Assal, Lemmer UL; Noronha, Alberto UL et al

in Journal of Cheminformatics (2017)

The mechanism of each chemical reaction in a metabolic network can be represented as a set of atom mappings, each of which relates an atom in a substrate metabolite to an atom of the same element in a ... [more ▼]

The mechanism of each chemical reaction in a metabolic network can be represented as a set of atom mappings, each of which relates an atom in a substrate metabolite to an atom of the same element in a product metabolite. Genome-scale metabolic network reconstructions typically represent biochemistry at the level of reaction stoichiometry. However, a more detailed representation at the underlying level of atom mappings opens the possibility for a broader range of biological, biomedical and biotechnological applications than with stoichiometry alone. Complete manual acquisition of atom mapping data for a genome-scale metabolic network is a laborious process. However, many algorithms exist to predict atom mappings. How do their predictions compare to each other and to manually curated atom mappings? For more than four thousand metabolic reactions in the latest human metabolic reconstruction, Recon 3D, we compared the atom mappings predicted by six atom mapping algorithms. We also compared these predictions to those obtained by manual curation of atom mappings for over five hundred reactions distributed among all top level Enzyme Commission number classes. Five of the evaluated algorithms had similarly high prediction accuracy of over 91% when compared to manually curated atom mapped reactions. On average, the accuracy of the prediction was highest for reactions catalysed by oxidoreductases and lowest for reactions catalysed by ligases. In addition to prediction accuracy, the algorithms were evaluated on their accessibility, their advanced features, such as the ability to identify equivalent atoms, and their ability to map hydrogen atoms. In addition to prediction accuracy, we found that software accessibility and advanced features were fundamental to the selection of an atom mapping algorithm in practice. [less ▲]

Detailed reference viewed: 130 (3 UL)
Full Text
Peer Reviewed
See detailDistributedFBA.jl: High-level, high-performance flux balance analysis in Julia.
Heirendt, Laurent UL; Thiele, Ines UL; Fleming, Ronan MT UL

in Bioinformatics (2017)

MOTIVATION: Flux balance analysis, and its variants, are widely used methods for predicting steady-state reaction rates in biochemical reaction networks. The exploration of high dimensional networks with ... [more ▼]

MOTIVATION: Flux balance analysis, and its variants, are widely used methods for predicting steady-state reaction rates in biochemical reaction networks. The exploration of high dimensional networks with such methods is currently hampered by software performance limitations. RESULTS: DistributedFBA.jl is a high-level, high-performance, open-source implementation of flux balance analysis in Julia. It is tailored to solve multiple flux balance analyses on a subset or all the reactions of large and huge-scale networks, on any number of threads or nodes. AVAILABILITY: The code is freely available on github.com/opencobra/COBRA.jl. The documentation can be found at opencobra.github.io/COBRA.jl. [less ▲]

Detailed reference viewed: 200 (12 UL)
Full Text
Peer Reviewed
See detailReliable and efficient solution of genome-scale models of Metabolism and macromolecular Expression
Ma, Ding; Yang, Laurence; Fleming, Ronan MT UL et al

in Scientific Reports (2017)

Detailed reference viewed: 198 (20 UL)
Full Text
Peer Reviewed
See detailGeneration of genome-scale metabolic reconstructions for 773 members of the human gut microbiota
Magnusdottir, Stefania UL; Heinken, Almut Katrin UL; Kutt, Laura et al

in Nature Biotechnology (2016)

Genome-scale metabolic models derived from human gut metagenomic data can be used as a framework to elucidate how microbial communities modulate human metabolism and health. We present AGORA (assembly of ... [more ▼]

Genome-scale metabolic models derived from human gut metagenomic data can be used as a framework to elucidate how microbial communities modulate human metabolism and health. We present AGORA (assembly of gut organisms through reconstruction and analysis), a resource of genome-scale metabolic reconstructions semi-automatically generated for 773 human gut bacteria. Using this resource, we identified a defined growth medium for Bacteroides caccae ATCC 34185. We also showed that interactions among modeled species depend on both the metabolic potential of each species and the nutrients available. AGORA reconstructions can integrate either metagenomic or 16S rRNA sequencing data sets to infer the metabolic diversity of microbial communities. AGORA reconstructions could provide a starting point for the generation of high-quality, manually curated metabolic reconstructions. AGORA is fully compatible with Recon 2, a comprehensive metabolic reconstruction of human metabolism, which will facilitate studies of host–microbiome interactions. [less ▲]

Detailed reference viewed: 671 (47 UL)
Full Text
Peer Reviewed
See detailConditions for duality between fluxes and concentrations in biochemical networks
Fleming, Ronan MT UL; Vlassis, Nikos; Thiele, Ines UL et al

in Journal of Theoretical Biology (2016), 409(21), 1-10

Detailed reference viewed: 216 (11 UL)
Full Text
Peer Reviewed
See detailReconMap: An interactive visualisation of human metabolism
Noronha, Alberto UL; Danielsdóttir, Anna Dröfn; Jóhannsson, Freyr et al

in Bioinformatics (2016)

A genome-scale reconstruction of human metabolism, Recon 2, is available but no interface exists to interactively visualise its content integrated with omics data and simulation results. We manually drew ... [more ▼]

A genome-scale reconstruction of human metabolism, Recon 2, is available but no interface exists to interactively visualise its content integrated with omics data and simulation results. We manually drew a comprehensive map, ReconMap 2.0, that is consistent with the content of Recon 2. We present it within a web interface that allows content query, visualization of custom datasets and submission of feedback to manual curators. ReconMap can be accessed via http://vmh.uni.lu, with network export in a Systems Biology Graphical Notation compliant format. A Constraint-Based Reconstruction and Analysis (COBRA) Toolbox extension to interact with ReconMap is available via https://github.com/opencobra/cobratoolbox. [less ▲]

Detailed reference viewed: 452 (35 UL)
Full Text
Peer Reviewed
See detailAdvantages and challenges of microfluidic cell culture in polydimethylsiloxane devices
Halldórsson, Skarphédinn; Lucumi Moreno, Edinson UL; Gómez-Sjöberg, Rafael et al

in Biosensors & Bioelectronics (2015), 63

Culture of cells using various microfluidic devices is becoming more common within experimental cell biology. At the same time, a technological radiation of microfluidic cell culture device designs is ... [more ▼]

Culture of cells using various microfluidic devices is becoming more common within experimental cell biology. At the same time, a technological radiation of microfluidic cell culture device designs is currently in progress. Ultimately, the utility of microfluidic cell culture will be determined by its capacity to permit new insights into cellular function. Especially insights that would otherwise be difficult or impossible to obtain with macroscopic cell culture in traditional polystyrene dishes, flasks or well-plates. Many decades of heuristic optimization have gone into perfecting conventional cell culture devices and protocols. In comparison, even for the most commonly used microfluidic cell culture devices, such as those fabricated from polydimethylsiloxane (PDMS), collective understanding of the differences in cellular behavior between microfluidic and macroscopic culture is still developing. Moving in vitro culture from macroscopic culture to PDMS based devices can come with unforeseen challenges. Changes in device material, surface coating, cell number per unit surface area or per unit media volume may all affect the outcome of otherwise standard protocols. In this review, we outline some of the advantages and challenges that may accompany a transition from macroscopic to microfluidic cell culture. We focus on decisive factors that distinguish macroscopic from microfluidic cell culture to encourage a reconsideration of how macroscopic cell culture principles might apply to microfluidic cell culture. [less ▲]

Detailed reference viewed: 169 (21 UL)
Full Text
Peer Reviewed
See detailDo Genome-scale Models Need Exact Solvers or Clearer Standards?
Ebrahim, Ali; Almaas, Eivind; Bauer, Eugen UL et al

in Molecular Systems Biology (2015), 11(10), 1

Detailed reference viewed: 691 (20 UL)