References of "Falk, Reinhard"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailCCM.G-K2 key comparison
Francis, Olivier UL; Baumann, Henri; Ullrich, Christian et al

in Metrologia (2015), 52(1A), 07009

In November 2013 an International Key Comparison, CCM.G-K2, was organized in the Underground Laboratory for Geodynamics in Walferdange. The comparison has assembled 25 participants coming from 19 ... [more ▼]

In November 2013 an International Key Comparison, CCM.G-K2, was organized in the Underground Laboratory for Geodynamics in Walferdange. The comparison has assembled 25 participants coming from 19 countries and four different continents. The comparison was divided into two parts: the key comparison that included 10 NMIs or DIs, and the pilot study including all participants. The global result given by the pilot study confirms that all instruments are absolutely coherent to each other. The results obtained for the key comparison confirm a good agreement between the NMI instruments. Main text. To reach the main text of this paper, click on Final Report [http://www.bipm.org/utils/common/pdf/final_reports/M/G-K2/CCM.G-K2.pdf] . Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/ [http://kcdb.bipm.org/] . The final report has been peer-reviewed and approved for publication by CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA). [less ▲]

Detailed reference viewed: 233 (42 UL)
Full Text
Peer Reviewed
See detailThe European Comparison of Absolute Gravimeters 2011 (ECAG-2011) in Walferdange, Luxembourg: results and recommendations
Francis, Olivier UL; Baumann, Henri; Volarik, Tomas et al

in Metrologia (2013), 50(3), 257

We present the results of the third European Comparison of Absolute Gravimeters held in Walferdange, Grand Duchy of Luxembourg, in November 2011. Twenty-two gravimeters from both metrological and non ... [more ▼]

We present the results of the third European Comparison of Absolute Gravimeters held in Walferdange, Grand Duchy of Luxembourg, in November 2011. Twenty-two gravimeters from both metrological and non-metrological institutes are compared. For the first time, corrections for the laser beam diffraction and the self-attraction of the gravimeters are implemented. The gravity observations are also corrected for geophysical gravity changes that occurred during the comparison using the observations of a superconducting gravimeter. We show that these corrections improve the degree of equivalence between the gravimeters. We present the results for two different combinations of data. In the first one, we use only the observations from the metrological institutes. In the second solution, we include all the data from both metrological and non-metrological institutes. Those solutions are then compared with the official result of the comparison published previously and based on the observations of the metrological institutes and the gravity differences at the different sites as measured by non-metrological institutes. Overall, the absolute gravity meters agree with one another with a standard deviation of3.1 µ Gal. Finally, the results of this comparison are linked to previous ones. We conclude with some important recommendations for future comparisons. [less ▲]

Detailed reference viewed: 152 (18 UL)
Full Text
Peer Reviewed
See detailFinal report of the regional key comparison EURAMET.M.G-K1: European Comparison of Absolute Gravimeters ECAG-2011
Francis, Olivier UL; Klein, Gilbert UL; Baumann, Henri et al

in Metrologia (2012), 49(1A), 07014

During November 2011 a EURAMET key comparison of absolute gravimeters was organized in the Underground Laboratory for Geodynamics in Walferdange, Luxemburg. The comparison assembled 22 participants coming ... [more ▼]

During November 2011 a EURAMET key comparison of absolute gravimeters was organized in the Underground Laboratory for Geodynamics in Walferdange, Luxemburg. The comparison assembled 22 participants coming from 16 countries and four different continents. The comparison was divided into two parts: a key comparison that included six National Metrology Institutes or Designated Institutes, and a pilot study including all participants. The global result given by the pilot study confirms that all instruments are absolutely coherent with each other. The results obtained in the key comparison confirm a good agreement between the NMI instruments. Finally, a link to ICAG-2009 [http://iopscience.iop.org/0026-1394/49/1A/07011/] shows also that the NMI gravimeters are stable in time. Main text. To reach the main text of this paper, click on Final Report [http://www.bipm.org/utils/common/pdf/final_reports/M/G-K1/EURAMET.M.G-K1.pdf] . Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/ [http://kcdb.bipm.org/] . The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA). [less ▲]

Detailed reference viewed: 147 (11 UL)
Full Text
Peer Reviewed
See detailFinal report on the Seventh International Comparison of Absolute Gravimeters (ICAG 2005)
Jiang, Z.; Francis, Olivier UL; Vitushkin, L. et al

in Metrologia (2011), 48

Detailed reference viewed: 62 (6 UL)
Full Text
Peer Reviewed
See detailResults of the European Comparison of Absolute Gravimeters in Walferdange (Luxembourg) of November 2007
Francis, Olivier UL; van Dam, Tonie UL; Germak, A. et al

in Gravity, Geoid and Earth Observation (2010)

The second international comparison of absolute gravimeters was held in Walferdange, Grand Duchy of Luxembourg, in November 2007, in which twenty absolute gravimeters took part. A short description of the ... [more ▼]

The second international comparison of absolute gravimeters was held in Walferdange, Grand Duchy of Luxembourg, in November 2007, in which twenty absolute gravimeters took part. A short description of the data processing and adjustments will be presented here and will be followed by the presentation of the results. Two different methods were applied to estimate the relative offsets between the gravimeters. We show that the results are equivalent as the uncertainties of both adjustments overlap. The absolute gravity meters agree with one another with a standard deviation of 2 μgal (1 gal = 1 cm/s2). [less ▲]

Detailed reference viewed: 106 (7 UL)
Full Text
Peer Reviewed
See detailA geophysical interpretation of the secular displacement and gravity rates observed at Ny-Alesund, Svalbard in the Arctic - effects of the post-glacial rebound and present-day ice melting
Sato, Tadahiro; Okuno, Junichi; Hinderer, Jacques et al

in Geophysical Journal International (2006), 165(3), 729-743

Detailed reference viewed: 56 (0 UL)
Peer Reviewed
See detailResults of the Sixth International Comparison of Absolute Gravimeters, ICAG-2001
Vitushkin, L.; Becker, M.; Jiang, Z. et al

in Metrologia (2002), 39(5), 407-427

The Sixth International Comparison of Absolute Gravimeters was held from 5 June to 28 August 2001 at the Bureau International des Poids et Mesures (BIPM), Sevres. Seventeen absolute gravimeters were used ... [more ▼]

The Sixth International Comparison of Absolute Gravimeters was held from 5 June to 28 August 2001 at the Bureau International des Poids et Mesures (BIPM), Sevres. Seventeen absolute gravimeters were used to make measurements at five sites of the BIPM gravity network. The vertical gravity gradients at the sites and the ties between them were also measured using seventeen relative gravimeters. For the first time the ties were also measured using absolute gravimeters. Various methods of processing the absolute and relative data were tested to calculate the results. The final results of ICAG-2001 are presented. The acceleration due to gravity at a height of 0.90 m is given as (980925701.2 ± 5.5) Gal and (980928018.8 ± 5.5) Gal for sites A and B, respectively, calculated using a combined adjustment of the absolute and relative data. [less ▲]

Detailed reference viewed: 68 (4 UL)