References of "Ducastelle, François"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailDirect and indirect excitons in boron nitride polymorphs: A story of atomic configuration and electronic correlation
Sponza, Lorenzo; Amara, Hakim; Attaccalite, Claudio et al

in Physical Review. B, Condensed Matter (2018), 98(12), 125206

We present a detailed discussion of the electronic band structure and excitonic dispersion of hexagonal boron nitride (hBN) in the single layer configuration and in three bulk polymorphs (usual AA′ ... [more ▼]

We present a detailed discussion of the electronic band structure and excitonic dispersion of hexagonal boron nitride (hBN) in the single layer configuration and in three bulk polymorphs (usual AA′ stacking, Bernal AB, and rhombohedral ABC). We focus on the changes in the electronic band structure and the exciton dispersion induced by the atomic configuration and the electron-hole interaction. Calculations are carried out at the level of ab initio many-body perturbation theory (GW and Bethe Salpeter equation) and of a purposely developed tight-binding model. We confirm the change from direct to indirect electronic gap when going from single layer to bulk systems and we give a detailed account of its origin by comparing the effect of different stacking sequences. We emphasize that the inclusion of the electron-hole interaction is crucial for the correct description of the momentum-dependent dispersion of the excitations. As a result the electron-hole dispersion is flatter than the one obtained from the band structure. In the AB stacking this effect is particularly important as the lowest-lying exciton is predicted to be direct despite the indirect electronic band gap. [less ▲]

Detailed reference viewed: 85 (5 UL)
Full Text
Peer Reviewed
See detailExcitons in boron nitride single layer
Galvani, Thomas; Paleari, Fulvio UL; Pereira Coutada Miranda, Henrique UL et al

in Physical Review. B : Condensed Matter (2016), 94(125303),

Boron nitride single layer belongs to the family of two-dimensional materials whose optical properties are currently receiving considerable attention. Strong excitonic effects have already been observed ... [more ▼]

Boron nitride single layer belongs to the family of two-dimensional materials whose optical properties are currently receiving considerable attention. Strong excitonic effects have already been observed in the bulk and still stronger effects are predicted for single layers. We present here a detailed study of these properties by combining ab initio calculations and a tight-binding Wannier analysis in both real and reciprocal space. Due to the simplicity of the band structure with single valence (π) and conduction (π∗) bands the tight-binding analysis becomes quasiquantitative with only two adjustable parameters and provides tools for a detailed analysis of the exciton properties. Strong deviations from the usual hydrogenic model are evidenced. The ground-state exciton is not a genuine Frenkel exciton, but a very localized tightly bound one. The other ones are similar to those found in transition-metal dichalcogenides and, although more localized, can be described within a Wannier-Mott scheme. [less ▲]

Detailed reference viewed: 251 (22 UL)
Full Text
Peer Reviewed
See detailInterdependency of Subsurface Carbon Distribution and Graphene− Catalyst Interaction
Weatherup, Robert S.; Amara, Hakim; Blume, Raoul et al

in Journal of the American Chemical Society (2014), 136(39), 3698-13708

The dynamics of the graphene-catalyst interaction during chemical vapor deposition are investigated using in situ, time- and depth-resolved X-ray photoelectron spectroscopy, and complementary grand ... [more ▼]

The dynamics of the graphene-catalyst interaction during chemical vapor deposition are investigated using in situ, time- and depth-resolved X-ray photoelectron spectroscopy, and complementary grand canonical Monte Carlo simulations coupled to a tight-binding model. We thereby reveal the interdependency of the distribution of carbon close to the catalyst surface and the strength of the graphene-catalyst interaction. The strong interaction of epitaxial graphene with Ni(111) causes a depletion of dissolved carbon close to the catalyst surface, which prevents additional layer formation leading to a self-limiting graphene growth behavior for low exposure pressures (10(-6)-10(-3) mbar). A further hydrocarbon pressure increase (to similar to 10(-1) mbar) leads to weakening of the graphene-Ni(111) interaction accompanied by additional graphene layer formation, mediated by an increased concentration of near-surface dissolved carbon. We show that growth of more weakly adhered, rotated graphene on Ni(111) is linked to an initially higher level of near-surface carbon compared to the case of epitaxial graphene growth. The key implications of these results for graphene growth control and their relevance to carbon nanotube growth are highlighted in the context of existing literature. [less ▲]

Detailed reference viewed: 86 (3 UL)