References of "Dorban, Gauthier"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailInflammation Promotes a Conversion of Astrocytes into Neural Progenitor Cells via NF-κB Activation
Gabel, Sebastien; Koncina, Eric UL; Dorban, Gauthier et al

in Molecular Neurobiology (2015), 53(8), 5041-5055

Brain inflammation, a common feature in neurodegenerative diseases, is a complex series of events, which can be detrimental and even lead to neuronal death. Nonetheless, several studies suggest that ... [more ▼]

Brain inflammation, a common feature in neurodegenerative diseases, is a complex series of events, which can be detrimental and even lead to neuronal death. Nonetheless, several studies suggest that inflammatory signals are also positively influencing neural cell proliferation, survival, migration, and differentiation. Recently, correlative studies suggested that astrocytes are able to dedifferentiate upon injury and may thereby re-acquire neural stem cell (NSC) potential. However, the mechanism underlying this dedifferentiation process upon injury remains unclear. Here, we report that during the early response of reactive gliosis, inflammation induces a conversion of mature astrocytes into neural progenitors. A TNF treatment induces the decrease of specific astrocyte markers, such as glial fibrillary acidic protein (GFAP) or genes related to glycogen metabolism, while a subset of these cells re-expresses immaturity markers, such as CD44, Musashi-1, and Oct4. Thus, TNF treatment results in the appearance of cells that exhibit a neural progenitor phenotype and are able to proliferate and differentiate into neurons and/or astrocytes. This dedifferentiation process is maintained as long as TNF is present in the culture medium. In addition, we highlight a role for Oct4 in this process, since the TNF-induced dedifferentiation can be prevented by inhibiting Oct4 expression. Our results show that activation of the NF-κB pathway through TNF plays an important role in the dedifferentiation of astrocytes via the re-expression of Oct4. These findings indicate that the first step of reactive gliosis is in fact a dedifferentiation process of resident astrocytes mediated by the NF-κB pathway. [less ▲]

Detailed reference viewed: 190 (28 UL)
Full Text
Peer Reviewed
See detailAn efficient method to limit microglia-dependent effects in astroglial cultures.
Losciuto, Sophie; Dorban, Gauthier; Gabel, Sébastien et al

in Journal of Neuroscience Methods (2012), 207(1), 59-71

Detailed reference viewed: 37 (3 UL)
Full Text
Peer Reviewed
See detailMicroglial activation depends on beta-amyloid conformation: role of the formylpeptide receptor 2
Heurtaux, Tony UL; Michelucci, Alessandro UL; Losciuto, Sophie UL et al

in Journal of Neurochemistry (2010), 114(2), 576-586

Alzheimer's disease (AD) is characterized by the presence of extracellular deposits referred to beta-amyloid (Abeta) complexes or senile plaques. Abeta peptide is firstly produced as monomers, readily ... [more ▼]

Alzheimer's disease (AD) is characterized by the presence of extracellular deposits referred to beta-amyloid (Abeta) complexes or senile plaques. Abeta peptide is firstly produced as monomers, readily aggregating to form multimeric complexes, of which the smallest aggregates are known to be the most neurotoxic. In AD patients, abundant reactive microglia migrate to and surround the Abeta plaques. Though it is well known that microglia are activated by Abeta, little is known about the peptide conformation and the signaling cascades responsible for this activation. In this study, we have stimulated murine microglia with different Abeta(1-42) forms, inducing an inflammatory state, which was peptide conformation-dependent. The lightest oligomeric forms induced a more violent inflammatory response, whereas the heaviest oligomers and the fibrillar conformation were less potent inducers. BocMLF, a formylpeptide chemotactic receptor 2 antagonist, decreased the oligomeric Abeta-induced inflammatory response. The Abeta-induced signal transduction was found to depend on phosphorylation mechanisms mediated by MAPKs and on activator protein 1/nuclear factor kappa-light-chain-enhancer of activated B cells pathways activation. These results suggest that the reactive microgliosis intensity during AD might depend on the disease progression and consequently on the Abeta conformation production. The recognition of Abeta by the formylpeptide chemotactic receptor 2 seems to be a starting point of the signaling cascade inducing an inflammatory state. [less ▲]

Detailed reference viewed: 145 (39 UL)