References of "Djarmati, Ana"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailRole of sepiapterin reductase gene at the PARK3 locus in Parkinson's disease.
Sharma, Manu; Maraganore, Demetrius M.; Ioannidis, John P. A. et al

in Neurobiology of aging (2011), 32(11), 21081-5

Sepiapterin reductase (SPR) gene is an enzyme which catalyses the final step of tetrahydrobiopterin synthesis (BH4) and was implicated in Parkinson's disease (PD) pathogenesis as a candidate gene for ... [more ▼]

Sepiapterin reductase (SPR) gene is an enzyme which catalyses the final step of tetrahydrobiopterin synthesis (BH4) and was implicated in Parkinson's disease (PD) pathogenesis as a candidate gene for PARK3 locus. A number of studies yielded association of the PARK3 locus with PD, and SPR knockout mice were shown to display parkinsonian features. To evaluate the role of SPR gene polymorphisms in diverse populations in PD, we performed collaborative analyses in the Genetic Epidemiology of Parkinson Disease (GEO-PD) Consortium. A total of 5 single nucleotide polymorphisms (3 in the promoter region and 2 in the 3' untranslated region [UTR]) were genotyped. Fixed as well as random effect models were used to provide summary risk estimates of SPR variants. A total of 19 sites provided data for 6547 cases and 9321 controls. Overall odds ratio estimates varied from 0.92 to 1.01. No overall association with the SPR gene using either fixed effect or random effect model was observed in the studied population. I(2) Metric varied from 0% to 36.2%. There was some evidence for an association for participants of North European/Scandinavian descent with the strongest signal for rs1876487 (odds ratio = 0.82; p value = 0.003). Interestingly, families which were used to map the PARK3 locus, have Scandinavian ancestry suggesting a founder effect. In conclusion, this large association study for the SPR gene revealed no association for PD worldwide. However, taking the initial mapping of the PARK3 into account, the role of a population-specific effect warrants consideration in future studies. [less ▲]

Detailed reference viewed: 86 (0 UL)
Full Text
Peer Reviewed
See detailA large-scale genetic association study to evaluate the contribution of Omi/HtrA2 (PARK13) to Parkinson's disease.
Krüger, Rejko UL; Sharma, Manu; Riess, Olaf et al

in Neurobiology of aging (2011), 32(3), 5489-18

High-profile studies have provided conflicting results regarding the involvement of the Omi/HtrA2 gene in Parkinson's disease (PD) susceptibility. Therefore, we performed a large-scale analysis of the ... [more ▼]

High-profile studies have provided conflicting results regarding the involvement of the Omi/HtrA2 gene in Parkinson's disease (PD) susceptibility. Therefore, we performed a large-scale analysis of the association of common Omi/HtrA2 variants in the Genetic Epidemiology of Parkinson's disease (GEO-PD) consortium. GEO-PD sites provided clinical and genetic data including affection status, gender, ethnicity, age at study, age at examination (all subjects); age at onset and family history of PD (patients). Genotyping was performed for the five most informative SNPs spanning the Omi/HtrA2 gene in approximately 2-3 kb intervals (rs10779958, rs2231250, rs72470544, rs1183739, rs2241028). Fixed as well as random effect models were used to provide summary risk estimates of Omi/HtrA2 variants. The 20 GEO-PD sites provided data for 6378 cases and 8880 controls. No overall significant associations for the five Omi/HtrA2 SNPs and PD were observed using either fixed effect or random effect models. The summary odds ratios ranged between 0.98 and 1.08 and the estimates of between-study heterogeneity were not large (non-significant Q statistics for all 5 SNPs; I(2) estimates 0-28%). Trends for association were seen for participants of Scandinavian descent for rs2241028 (OR 1.41, p=0.04) and for rs1183739 for age at examination (cut-off 65 years; OR 1.17, p=0.02), but these would not be significant after adjusting for multiple comparisons and their Bayes factors were only modest. This largest association study performed to define the role of any gene in the pathogenesis of Parkinson's disease revealed no overall strong association of Omi/HtrA2 variants with PD in populations worldwide. [less ▲]

Detailed reference viewed: 72 (1 UL)
Peer Reviewed
See detailAutosomal dominant myoclonus-dystonia and Tourette syndrome in a family without linkage to the SGCE gene.
Orth, Michael; Djarmati, Ana; Baumer, Tobias et al

in Movement disorders : official journal of the Movement Disorder Society (2007), 22(14), 2090-6

The objective of this study was to report clinical details and results of genetic testing for mutations in the epsilon-sarcoglycan (SGCE) gene, the Slit and Trk-like 1 (SLITRK1) gene and for linkage to ... [more ▼]

The objective of this study was to report clinical details and results of genetic testing for mutations in the epsilon-sarcoglycan (SGCE) gene, the Slit and Trk-like 1 (SLITRK1) gene and for linkage to the DYT15, DYT1, and DRD2 gene loci in a family with autosomal dominant myoclonus-dystonia (M-D) and Gilles de la Tourette syndrome (GTS). Fourteen family members, from three generations, underwent a detailed clinical assessment and donated DNA samples. The SGCE and the SLITRK1 gene were sequenced and investigated by gene dosage analysis in selected family members. Linkage to the SGCE, DYT15, DYT1, DRD2, and SLITRK1 loci was also tested. RESULTS: We included three healthy and 11 affected family members with M-D (n = 3), dystonia alone (n = 2), GTS (n = 1), tics (n = 1) or a combination of these with obsessive compulsive disorder (OCD) (M-D + OCD: n = 2; dystonia+OCD: n = 1; M-D + GTS + OCD: n = 1). There was no linkage to the SGCE, DYT15, DYT1 or DRD2 loci. No changes were found in the SLITRK1 gene. The presence of both M-D and GTS in one family, in which all known M-D loci and a recently discovered GTS locus were excluded, suggests a novel susceptibility gene for both M-D and GTS. [less ▲]

Detailed reference viewed: 29 (1 UL)
Peer Reviewed
See detailRapid and reliable detection of exon rearrangements in various movement disorders genes by multiplex ligation-dependent probe amplification.
Djarmati, Ana; Guzvic, Miodrag; Grünewald, Anne UL et al

in Movement disorders : official journal of the Movement Disorder Society (2007), 22(12), 1708-14

Because of the occurrence of different types of mutations, comprehensive genetic testing for Parkinson's disease (PD), dopa-responsive dystonia (DRD), and myoclonus-dystonia (M-D) should include screening ... [more ▼]

Because of the occurrence of different types of mutations, comprehensive genetic testing for Parkinson's disease (PD), dopa-responsive dystonia (DRD), and myoclonus-dystonia (M-D) should include screening for small sequence changes and for large exonic rearrangements in disease-associated genes. In diagnostic and research settings, the latter is frequently omitted or performed by laborious and expensive quantitative real-time PCR (qPCR). Our study aimed to evaluate the utility of a novel method, multiplex ligation-dependent probe amplification (MLPA), in molecular diagnostics of movement disorders. We have analyzed, by MLPA, genomic DNA from 21 patients affected with PD, DRD, or M-D, in which the presence of exon rearrangement(s) (n = 20) or of a specific point mutation (detectable by MLPA, n = 1) had been established previously by qPCR or sequencing. In parallel, we have studied, in a blinded fashion, DNA from 49 patients with an unknown mutational status. Exon rearrangements were evident in 20 samples with previously established mutations; in the 21st sample the known specific point mutation was detected. We conclude that MLPA represents a reliable method for large-scale and cost-effective gene dosage screening of various movement disorders genes. This finding reaches far beyond a simple technical advancement and has two major implications: (1) By improving the availability of comprehensive genetic testing, it supports clinicians in the establishment of a genetically defined diagnosis; (2) By enabling gene dosage testing of several genes simultaneously, it significantly facilitates the mutational analysis of large patient and control populations and thereby constitutes the prerequisite for meaningful phenotype-genotype correlations. [less ▲]

Detailed reference viewed: 34 (1 UL)
Peer Reviewed
See detailClinical spectrum of homozygous and heterozygous PINK1 mutations in a large German family with Parkinson disease: role of a single hit?
Hedrich, Katja; Hagenah, Johann; Djarmati, Ana et al

in Archives of neurology (2006), 63(6), 833-8

BACKGROUND: Although homozygous mutations in the PTEN-induced putative kinase 1 (PINK1) gene have been unequivocally associated with early-onset Parkinson disease (PD), the role of single heterozygous ... [more ▼]

BACKGROUND: Although homozygous mutations in the PTEN-induced putative kinase 1 (PINK1) gene have been unequivocally associated with early-onset Parkinson disease (PD), the role of single heterozygous PINK1 mutations is less clear. OBJECTIVE: To investigate the role of homozygous and heterozygous PINK1 mutations in a large German pedigree (family W). DESIGN: Mutation analysis of PINK1 and results of standardized neurological and motor examination by 3 independent movement disorder specialists, including blinded video rating. SETTINGS: University of Lubeck. PARTICIPANTS: Twenty family members. MAIN OUTCOME MEASURES: The PINK1 genotype and PD status of all family members. RESULTS: The index patient of family W carried a homozygous nonsense mutation (c.1366C>T; p.Q456X) and presented with a phenotype closely resembling idiopathic PD but with an onset at 39 years of age. The family included a total of 4 affected homozygous members (age, 60-71 years; age at onset, 39-61 years), 6 members with slight or mild signs of PD (affected) and a heterozygous mutation (age, 31-49 years), and 5 unaffected heterozygous mutation carriers (age, 34-44 years). Although none of the heterozygous affected family members was aware of their signs (asymptomatic), the clinical findings were unequivocal and predominantly or exclusively present on their dominant right-hand side, eg, unilaterally reduced or absent arm swing and unilateral rigidity. The heterozygous members were all considerably younger than the affected homozygous mutation carriers. CONCLUSIONS: Heterozygous PINK1 mutations may predispose to PD, as was previously suggested by the presence of dopamine hypometabolism in asymptomatic mutation carriers. Long-term follow-up of our large family W provides an excellent opportunity to further evaluate the role of single heterozygous PINK1 mutations later in life, which will have major implications on genetic counseling. [less ▲]

Detailed reference viewed: 47 (4 UL)