References of "Diederich, Marc"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailValproic acid perturbs hematopoietic homeostasis by inhibition of erythroid differentiation and activation of the myelo-monocytic pathway
Chateauvieux, Sebastien; Eifes, Serge UL; Morceau, Franck et al

in Biochemical Pharmacology (2011), 81(4), 498-509

As a histone deacetylase inhibitor, valproic acid (VPA) is a candidate for anticancer therapy. Besides, VPA exhibits various mechanisms of action and its effects on the molecular basis of hematopoiesis ... [more ▼]

As a histone deacetylase inhibitor, valproic acid (VPA) is a candidate for anticancer therapy. Besides, VPA exhibits various mechanisms of action and its effects on the molecular basis of hematopoiesis remain unclear. To study the effects of VPA on the hematopoietic system, we performed microarray analysis using K562 cells treated with 1mM VPA over a 72h time course. The association between gene ontology (GO) terms and the lists of differentially expressed genes was tested using the Bioconductor package GOstats. Enrichment analysis for cellular differentiation pathways was performed based on manually curated gene lists. Results from microarray analysis were confirmed by studying cell differentiation features at the molecular and cellular levels using other hematopoietic cell lines as well as hematopoietic stem/progenitor CD34(+) cells. Microarray analysis revealed 3440 modulated genes in the presence of VPA. Genes involved in the granulo-monocytic differentiation pathway were up-regulated while genes of the erythroid pathway were down-regulated. This was confirmed by analyzing erythrocytic and myeloid membrane markers and lineage-related gene expression in HEL, MEG01, HL60 as well as CD34(+) cells. Moreover, GATA-1 and its co-factors (FOG1, SP1) were down-regulated, while myelopoiesis activator PU.1 was up-regulated, in agreement with an inhibition of erythropoiesis. Our functional profiling and cell phenotyping approach demonstrates that VPA is able to alter hematopoietic homeostasis by modifying the cell population balance in the myeloid compartment. This may lead to a potential failure of erythropoiesis in patients with cancer or chronic inflammatory diseases having a well-described propensity to anemia. [less ▲]

Detailed reference viewed: 37 (0 UL)
Full Text
Peer Reviewed
See detailCurcumin-the paradigm of a multi-target natural compound with applications in cancer prevention and treatment
Teiten, Marie-Helene; Eifes, Serge UL; Dicato, Mario et al

in Toxins (2010), 79(4), 128-62

As cancer is a multifactor disease, it may require treatment with compounds able to target multiple intracellular components. We summarize here how curcumin is able to modulate many components of ... [more ▼]

As cancer is a multifactor disease, it may require treatment with compounds able to target multiple intracellular components. We summarize here how curcumin is able to modulate many components of intracellular signaling pathways implicated in inflammation, cell proliferation and invasion and to induce genetic modulations eventually leading to tumor cell death. Clinical applications of this natural compound were initially limited by its low solubility and bioavailability in both plasma and tissues but combination with adjuvant and delivery vehicles was reported to largely improve bio-availability of curcumin. Moreover, curcumin was reported to act in synergism with several natural compounds or synthetic agents commonly used in chemotherapy. Based on this, curcumin could thus be considered as a good candidate for cancer prevention and treatment when used alone or in combination with other conventional treatments. [less ▲]

Detailed reference viewed: 40 (0 UL)
Full Text
Peer Reviewed
See detailHeteronemin, a spongean sesterterpene, inhibits TNF alpha-induced NF-kappa B activation through proteasome inhibition and induces apoptotic cell death
Schumacher, Marc; Cerella, Claudia; Eifes, Serge UL et al

in Biochemical Pharmacology (2010), 79(4), 610-22

In this study, we investigated the biological effects of heteronemin, a marine sesterterpene isolated from the sponge Hyrtios sp. on chronic myelogenous leukemia cells. To gain further insight into the ... [more ▼]

In this study, we investigated the biological effects of heteronemin, a marine sesterterpene isolated from the sponge Hyrtios sp. on chronic myelogenous leukemia cells. To gain further insight into the molecular mechanisms triggered by this compound, we initially performed DNA microarray profiling and determined which genes respond to heteronemin stimulation in TNFalpha-treated cells and which genes display an interaction effect between heteronemin and TNFalpha. Within the differentially regulated genes, we found that heteronemin was affecting cellular processes including cell cycle, apoptosis, mitogen-activated protein kinases (MAPKs) pathway and the nuclear factor kappaB (NF-kappaB) signaling cascade. We confirmed in silico experiments regarding NF-kappaB inhibition by reporter gene analysis, electrophoretic mobility shift analysis and I-kappaB degradation. In order to assess the underlying molecular mechanisms, we determined that heteronemin inhibits both trypsin and chymotrypsin-like proteasome activity at an IC(50) of 0.4 microM. Concomitant to the inhibition of the NF-kappaB pathway, we also observed a reduction in cellular viability. Heteronemin induces apoptosis as shown by annexin V-FITC/propidium iodide-staining, nuclear morphology analysis, pro-caspase-3, -8 and -9 and poly(ADP-ribose) polymerase (PARP) cleavage as well as truncation of Bid. Altogether, results show that this compound has potential as anti-inflammatory and anti-cancer agent. [less ▲]

Detailed reference viewed: 37 (0 UL)
Full Text
Peer Reviewed
See detailChemopreventive potential of curcumin in prostate cancer
Teiten, Marie-Helene; Gaascht, Francois; Eifes, Serge UL et al

in Genes and Nutrition (2010), 5(1), 61-74

The long latency and high incidence of prostate carcinogenesis provides the opportunity to intervene with chemoprevention in order to prevent or eradicate prostate malignancies. We present here an ... [more ▼]

The long latency and high incidence of prostate carcinogenesis provides the opportunity to intervene with chemoprevention in order to prevent or eradicate prostate malignancies. We present here an overview of the chemopreventive potential of curcumin (diferuloylmethane), a well-known natural compound that exhibits therapeutic promise for prostate cancer. In fact, it interferes with prostate cancer proliferation and metastasis development through the down-regulation of androgen receptor and epidermal growth factor receptor, but also through the induction of cell cycle arrest. It regulates the inflammatory response through the inhibition of pro-inflammatory mediators and the NF-kappaB signaling pathway. These results are consistent with this compound's ability to up-induce pro-apoptotic proteins and to down-regulate the anti-apoptotic counterparts. Alone or in combination with TRAIL-mediated immunotherapy or radiotherapy, curcumin is also reported to be a good inducer of prostate cancer cell death by apoptosis. Curcumin appears thus as a non-toxic alternative for prostate cancer prevention, treatment or co-treatment. [less ▲]

Detailed reference viewed: 38 (0 UL)
Full Text
Peer Reviewed
See detailGene expression profiling related to anti-inflammatory properties of curcumin in K562 leukemia cells
Teiten, Marie-Helene; Eifes, Serge UL; Reuter, Simone et al

in Annals of the New York Academy of Sciences (2009), 1171

A strong relationship exists between inflammation and carcinogenesis. To bring insights into the anti-inflammatory mechanisms by which chemopreventive agents, such as curcumin, are able to counteract the ... [more ▼]

A strong relationship exists between inflammation and carcinogenesis. To bring insights into the anti-inflammatory mechanisms by which chemopreventive agents, such as curcumin, are able to counteract the action of inflammation mediators, such as tumor necrosis factor-alpha (TNF-alpha), we compared gene expression profiles in K562 cells treated with curcumin-TNF-alpha versus TNF-alpha alone. Microarray data analysis revealed that, among the 376 differentially expressed genes by curcumin treatment, genes belonging to the cell cycle and the Janus kinase-signal transducer and activator of transcription signaling pathways were downregulated. This study also indicated that the upregulation of the heat shock family genes is highly implicated in the anti-inflammatory effect of curcumin. [less ▲]

Detailed reference viewed: 41 (0 UL)
Full Text
Peer Reviewed
See detailTumor necrosis factor alpha induces gamma-glutamyltransferase expression via nuclear factor-kappaB in cooperation with Sp1
Reuter, Simone; Schnekenburger, Michael; Cristofanon, Silvia et al

in Biochemical Pharmacology (2009), 77(3), 397-411

Gamma-glutamyltransferase (GGT) cleaves the gamma-glutamyl moiety of glutathione (GSH), an endogenous antioxidant, and is involved in mercapturic acid metabolism and in cancer drug resistance when ... [more ▼]

Gamma-glutamyltransferase (GGT) cleaves the gamma-glutamyl moiety of glutathione (GSH), an endogenous antioxidant, and is involved in mercapturic acid metabolism and in cancer drug resistance when overexpressed. Moreover, GGT converts leukotriene (LT) C4 into LTD4 implicated in various inflammatory pathologies. So far the effect of inflammatory stimuli on regulation of GGT expression and activity remained to be addressed. We found that the proinflammatory cytokine tumor necrosis factor alpha (TNFalpha) induced GGT promoter transactivation, mRNA and protein synthesis, as well as enzymatic activity. Remicade, a clinically used anti-TNFalpha antibody, small interfering RNA (siRNA) against p50 and p65 nuclear factor-kappaB (NF-kappaB) isoforms, curcumin, a well characterized natural NF-kappaB inhibitor, as well as a dominant negative inhibitor of kappaB alpha (IkappaBalpha), prevented GGT activation at various levels, illustrating the involvement of this signaling pathway in TNFalpha-induced stimulation. Over-expression of receptor of TNFalpha-1 (TNFR1), TNFR-associated factor-2 (TRAF2), TNFR-1 associated death domain (TRADD), dominant negative (DN) IkappaBalpha or NF-kappaB p65 further confirmed GGT promoter activation via NF-kappaB. Linker insertion mutagenesis of 536 bp of the proximal GGT promoter revealed NF-kappaB and Sp1 binding sites at -110 and -78 relative to the transcription start site, responsible for basal GGT transcription. Mutation of the NF-kappaB site located at -110 additionally inhibited TNFalpha-induced promoter induction. Chromatin immunoprecipitation (ChIP) assays confirmed mutagenesis results and further demonstrated that TNFalpha treatment induced in vivo binding of both NF-kappaB and Sp1, explaining increased GGT expression, and led to RNA polymerase II recruitment under inflammatory conditions. [less ▲]

Detailed reference viewed: 34 (1 UL)
Peer Reviewed
See detailModulation of anti-apoptotic and survival pathways by curcumin as a strategy to induce apoptosis in cancer cells
Reuter, Simone; Eifes, Serge UL; Dicato, Mario et al

in Biochemical Pharmacology (2008), 76(11), 1340-51

Apoptosis is a highly regulated mechanism by which cells undergo cell death in an active way. As one of the most challenging tasks concerning cancer is to induce apoptosis in malignant cells, researchers ... [more ▼]

Apoptosis is a highly regulated mechanism by which cells undergo cell death in an active way. As one of the most challenging tasks concerning cancer is to induce apoptosis in malignant cells, researchers increasingly focus on natural products to modulate apoptotic signaling pathways. Curcumin, a natural compound isolated from the plant Curcuma longa, has chemopreventive properties, which are mainly due to its ability to arrest cell cycle and to induce apoptosis. This article reviews the main effects of curcumin on the different apoptotic signaling pathways involved in curcumin-induced apoptosis of cancer cells, including the intrinsic and extrinsic apoptosis pathways, the NF-kappaB-mediated pathway as well as the PI3K/Akt signaling pathway. This review also focuses on the sensitization of cells to TRAIL-induced apoptosis after curcumin treatment and shows that curcumin enhances the capacity to induce cell death of different chemotherapeutical drugs. [less ▲]

Detailed reference viewed: 27 (0 UL)