References of "DiStasio, Jr"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailFirst-Principles Models for van der Waals Interactions in Molecules and Materials: Concepts, Theory, and Applications
Hermann, Jan; DiStasio Jr.; Tkatchenko, Alexandre UL

in Chemical Reviews (2017), 117

Noncovalent van der Waals (vdW) or dispersion forces are ubiquitous in nature and influence the structure, stability, dynamics, and function of molecules and materials throughout chemistry, biology ... [more ▼]

Noncovalent van der Waals (vdW) or dispersion forces are ubiquitous in nature and influence the structure, stability, dynamics, and function of molecules and materials throughout chemistry, biology, physics, and materials science. These forces are quantum mechanical in origin and arise from electrostatic interactions between fluctuations in the electronic charge density. Here, we explore the conceptual and mathematical ingredients required for an exact treatment of vdW interactions, and present a systematic and unified framework for classifying the current first-principles vdW methods based on the adiabatic-connection fluctuation−dissipation (ACFD) theorem (namely the Rutgers−Chalmers vdW-DF, Vydrov−Van Voorhis (VV), exchange-hole dipole moment (XDM), Tkatchenko−Scheffler (TS), many-body dispersion (MBD), and random-phase approximation (RPA) approaches). Particular attention is paid to the intriguing nature of many-body vdW interactions, whose fundamental relevance has recently been highlighted in several landmark experiments. The performance of these models in predicting binding energetics as well as structural, electronic, and thermodynamic properties is connected with the theoretical concepts and provides a numerical summary of the state-of-the-art in the field. We conclude with a roadmap of the conceptual, methodological, practical, and numerical challenges that remain in obtaining a universally applicable and truly predictive vdW method for realistic molecular systems and materials. [less ▲]

Detailed reference viewed: 250 (6 UL)
Full Text
Peer Reviewed
See detailMany-Body Dispersion Interactions in Molecular Crystal Polymorphism
Marom, Noa; DiStasio, Jr; Atalla, Viktor et al

in ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2013), 52(26), 6629-6632

Detailed reference viewed: 74 (1 UL)
Full Text
Peer Reviewed
See detailInteratomic methods for the dispersion energy derived from the adiabatic connection fluctuation-dissipation theorem
Tkatchenko, Alexandre UL; Ambrosetti, Alberto; DiStasio, Jr

in JOURNAL OF CHEMICAL PHYSICS (2013), 138(7),

Interatomic pairwise methods are currently among the most popular and accurate ways to include dispersion energy in density functional theory calculations. However, when applied to more than two atoms ... [more ▼]

Interatomic pairwise methods are currently among the most popular and accurate ways to include dispersion energy in density functional theory calculations. However, when applied to more than two atoms, these methods are still frequently perceived to be based on ad hoc assumptions, rather than a rigorous derivation from quantum mechanics. Starting from the adiabatic connection fluctuation-dissipation (ACFD) theorem, an exact expression for the electronic exchange-correlation energy, we demonstrate that the pairwise interatomic dispersion energy for an arbitrary collection of isotropic polarizable dipoles emerges from the second-order expansion of the ACFD formula upon invoking the random-phase approximation (RPA) or the full-potential approximation. Moreover, for a system of quantum harmonic oscillators coupled through a dipole-dipole potential, we prove the equivalence between the full interaction energy obtained from the Hamiltonian diagonalization and the ACFD-RPA correlation energy. This property makes the Hamiltonian diagonalization an efficient method for the calculation of the many-body dispersion energy. In addition, we show that the switching function used to damp the dispersion interaction at short distances arises from a short-range screened Coulomb potential, whose role is to account for the spatial spread of the individual atomic dipole moments. By using the ACFD formula, we gain a deeper understanding of the approximations made in the interatomic pairwise approaches, providing a powerful formalism for further development of accurate and efficient methods for the calculation of the dispersion energy. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4789814] [less ▲]

Detailed reference viewed: 80 (3 UL)
Full Text
Peer Reviewed
See detailAccurate and Efficient Method for Many-Body van der Waals Interactions
Tkatchenko, Alexandre UL; DiStasio, Jr; Car, Roberto et al

in PHYSICAL REVIEW LETTERS (2012), 108(23),

An efficient method is developed for the microscopic description of the frequency-dependent polarizability of finite-gap molecules and solids. This is achieved by combining the Tkatchenko-Scheffler van ... [more ▼]

An efficient method is developed for the microscopic description of the frequency-dependent polarizability of finite-gap molecules and solids. This is achieved by combining the Tkatchenko-Scheffler van der Waals (vdW) method [Phys. Rev. Lett. 102, 073005 (2009)] with the self-consistent screening equation of classical electrodynamics. This leads to a seamless description of polarization and depolarization for the polarizability tensor of molecules and solids. The screened long-range many-body vdW energy is obtained from the solution of the Schrodinger equation for a system of coupled oscillators. We show that the screening and the many-body vdW energy play a significant role even for rather small molecules, becoming crucial for an accurate treatment of conformational energies for biomolecules and binding of molecular crystals. The computational cost of the developed theory is negligible compared to the underlying electronic structure calculation. [less ▲]

Detailed reference viewed: 85 (2 UL)