References of "Darouach, Mohamed"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailNonlinear Model Predictive Control for Ecological Driver Assistance Systems in Electric Vehicles
Sajadi Alamdari, Seyed Amin UL; Voos, Holger UL; Darouach, Mohamed

in Robotics and Autonomous Systems (2018)

Detailed reference viewed: 72 (10 UL)
Full Text
Peer Reviewed
See detailEcological Advanced Driver Assistance System for Optimal Energy Management in Electric Vehicles
Sajadi Alamdari, Seyed Amin UL; Voos, Holger UL; Darouach, Mohamed

in IEEE Intelligent Transportation Systems Magazine (2018)

Battery Electric Vehicles have a high potential in modern transportation, however, they are facing limited cruising range. The driving style, the road geometries including slopes, curves, the static and ... [more ▼]

Battery Electric Vehicles have a high potential in modern transportation, however, they are facing limited cruising range. The driving style, the road geometries including slopes, curves, the static and dynamic traffic conditions such as speed limits and preceding vehicles have their share of energy consumption in the host electric vehicle. Optimal energy management based on a semi-autonomous ecological advanced driver assistance system can improve the longitudinal velocity regulation in a safe and energy-efficient driving strategy. The main contribution of this paper is the design of a real-time risk-sensitive nonlinear model predictive controller to plan the online cost-effective cruising velocity in a stochastic traffic environment. The basic idea is to measure the relevant states of the electric vehicle at runtime, and account for the road slopes, the upcoming curves, and the speed limit zones, as well as uncertainty in the preceding vehicle behavior to determine the energy-efficient velocity profile. Closed-loop Entropic Value-at-Risk as a coherent risk measure is introduced to quantify the risk involved in the system constraints violation. The obtained simulation and field experimental results demonstrate the effectiveness of the proposed method for a semi-autonomous electric vehicle in terms of safe and energy-efficient states regulation and constraints satisfaction. [less ▲]

Detailed reference viewed: 105 (5 UL)
Full Text
Peer Reviewed
See detailExperimental validation of adaptive control for a Shape Memory Alloy actuated lightweight robotic arm
Quintanar Guzman, Serket UL; Kannan, Somasundar UL; Voos, Holger UL et al

in ASME 2018 Conferences on Smart Materials, Adaptive Structures and Intelligent Systems, San Antonio 10-12 September 2018 (2018, September)

This article presents the experimental validation of a Direct Adaptive Control for angular position regulation of a lightweight robotic arm. The robotic arm is single degree-of-freedom (DOF) system ... [more ▼]

This article presents the experimental validation of a Direct Adaptive Control for angular position regulation of a lightweight robotic arm. The robotic arm is single degree-of-freedom (DOF) system, actuated by two Shape Memory Alloy (SMA) wires. The proposed adaptive control is capable of adapting itself to the hysteretic behavior of SMA wires and update its behavior to deal with the changing parameters of the material over time. The closed-loop approach is tested experimentally showing its effectiveness to deal with the highly nonlinear dynamics of the SMA wires. These results are discussed and compared with a classical control approach. The updated design and hardware development and modeling of the robotic arm are shown. [less ▲]

Detailed reference viewed: 78 (8 UL)
Full Text
Peer Reviewed
See detailVulnerability Analysis of Cyber Physical Systems under False-Data injection and disturbance attacks
Gerard, Benjamin; Bezzaoucha, Souad UL; Voos, Holger UL et al

in Vulnerability Analysis of Cyber Physical Systems under False-Data injection and disturbance attacks (2018, September)

In the present paper, the problem of attacks on cyber-physical systems via networked control system (NCS) subject to unmeasured disturbances is considered. The geometric approach is used to evaluate the ... [more ▼]

In the present paper, the problem of attacks on cyber-physical systems via networked control system (NCS) subject to unmeasured disturbances is considered. The geometric approach is used to evaluate the security and vulnerability level of the controlled system. The presented work deals with the so-called false data injection attacks and shows how imperfectly known disturbances can be used to perform undetectable, or at least stealthy, attacks that can make the NCS vulnerable to attacks from malicious outsiders. A numerical example is given to illustrate the approach. [less ▲]

Detailed reference viewed: 61 (6 UL)
Full Text
Peer Reviewed
See detailStochastic Optimum Energy Management for Advanced Transportation Network
Sajadi Alamdari, Seyed Amin UL; Voos, Holger UL; Darouach, Mohamed

in 15th IFAC Symposium on Control in Transportation Systems CTS 2018 (2018, July 19)

Smart and optimal energy consumption in electric vehicles has high potential to improve the limited cruising range on a single battery charge. The proposed concept is a semi-autonomous ecological advanced ... [more ▼]

Smart and optimal energy consumption in electric vehicles has high potential to improve the limited cruising range on a single battery charge. The proposed concept is a semi-autonomous ecological advanced driver assistance system which predictively plans for a safe and energy-efficient cruising velocity profile autonomously for battery electric vehicles. However, high entropy in transportation network leads to a challenging task to derive a computationally efficient and tractable model to predict the traffic flow. Stochastic optimal control has been developed to systematically find an optimal decision with the aim of performance improvement. However, most of the developed methods are not real-time algorithms. Moreover, they are mainly risk-neutral for safety-critical systems. This paper investigates on the real-time risk-sensitive nonlinear optimal control design subject to safety and ecological constraints. This system improves the efficiency of the transportation network at the microscopic level. Obtained results demonstrate the effectiveness of the proposed method in terms of states regulation and constraints satisfaction. [less ▲]

Detailed reference viewed: 81 (6 UL)
Full Text
Peer Reviewed
See detailCyber Security and Vulnerability Analysis of Networked Control System subject to False-Data injection
Gerard, Benjamin; Bezzaoucha, Souad UL; Voos, Holger UL et al

in Proceedings of the 2018 American Control Conference (2018, June 27)

In the present paper, the problem of networked control system (NCS) cyber security is considered. The geometric approach is used to evaluate the security and vulnerability level of the controlled system ... [more ▼]

In the present paper, the problem of networked control system (NCS) cyber security is considered. The geometric approach is used to evaluate the security and vulnerability level of the controlled system. The proposed results are about the so-called false data injection attacks and show how imperfectly known disturbances can be used to perform undetectable, or at least stealthy, attacks that can make the NCS vulnerable to attacks from malicious outsiders. A numerical example is given to illustrate the approach. [less ▲]

Detailed reference viewed: 155 (8 UL)
Full Text
Peer Reviewed
See detailAdaptive control for a lightweight robotic arm actuated by a Shape Memory Allow wire
Quintanar Guzman, Serket UL; Kannan, Somasundar UL; Voos, Holger UL et al

in 16th International Conference on New Actuators, Bremen 25-27 June 2018 (2018, June)

This paper presents the design, model and closed-loop control of a single degree-of-freedom (DOF) lightweight robotic arm actuated by a biased Shape Memory Alloy (SMA) wire. The highly non-linear dynamics ... [more ▼]

This paper presents the design, model and closed-loop control of a single degree-of-freedom (DOF) lightweight robotic arm actuated by a biased Shape Memory Alloy (SMA) wire. The highly non-linear dynamics of SMAs represent a challenge for control tasks, due to phenomena as hysteresis or parameters uncertainty. With this in mind, we propose a control capable to adapt itself to the hysteretic behavior and update its behavior to deal with the changing parameters of the material over time. An adaptive control for position regulation is presented. This control includes a set of techniques, providing a systematic way to adjust the control parameters in real time, so maintaining the stability of the system and a desired performance, while dealing with parameter and model uncertainties. The closed-loop approach is tested in experimentally showing its effectiveness to deal with the highly non-linear dynamics of the SMA wire. [less ▲]

Detailed reference viewed: 19 (2 UL)
Full Text
Peer Reviewed
See detailAttack-tolerant Control and Observer-based Trajectory Tracking for Cyber-Physical Systems
Bezzaoucha, Souad UL; Voos, Holger UL; Darouach, Mohamed

in European Journal of Control (2018)

In the present paper, a model-based fault/attack tolerant scheme is proposed to cope with cyber-threats on Cyber-Physicals Systems. A common scheme based on observers is designed and a state feedback ... [more ▼]

In the present paper, a model-based fault/attack tolerant scheme is proposed to cope with cyber-threats on Cyber-Physicals Systems. A common scheme based on observers is designed and a state feedback control based on an aperiodic event-triggered framework is given with control synthesis and condition on the switching time. Classical fault tolerant control with Bi-linear Matrix Inequality () approaches are used to achieve novel and better security strategy based on an event-triggered control implementation. The purpose of using the event-based implementation would be to reduce (limit) the total number of transmissions to only instances when the networked control system (NCS) needs attention. Simulation results on a real-time laboratory three tank system are given to show the attack-tolerant control ability despite data deception attacks on both actuators and sensors. A detection/isolation scheme based on residual observers bank is also proposed. [less ▲]

Detailed reference viewed: 213 (5 UL)
Full Text
Peer Reviewed
See detailObserver-based Event-triggered Attack-Tolerant Control Design for Cyber-physical Systems
Bezzaoucha, Souad UL; Voos, Holger UL; Darouach, Mohamed

in 14th International Workshop on Advanced Control and Diagnosis, Bucharest, Romania, November 2017 (2017, November)

In the present paper, a model-based fault/attack tolerant scheme is proposed to cope with cyber-threats on Cyber Physicals Systems. A common scheme based on observers is designed and a state feedback ... [more ▼]

In the present paper, a model-based fault/attack tolerant scheme is proposed to cope with cyber-threats on Cyber Physicals Systems. A common scheme based on observers is designed and a state feedback control based on an aperiodic event-triggered framework is given with control synthesis and condition on the switching time. Classical fault tolerant control with Bilinear Matrix Inequality (BMI) approaches are used to achieve novel and better security strategy based on an event-triggered control implementation. The purpose in using the event-based implementation would be to reduce (limit) the total number of transmissions to only instances when the networked control system (NCS) needs attention. An illustrative example of the proposed approach applied to a three-tank system is presented. [less ▲]

Detailed reference viewed: 125 (5 UL)
Full Text
Peer Reviewed
See detailDeadzone-Quadratic Penalty Function for Predictive Extended Cruise Control with Experimental Validation
Sajadi Alamdari, Seyed Amin UL; Voos, Holger UL; Darouach, Mohamed

in ROBOT 2017: Third Iberian Robotics Conference, Sevilla, Spain 22-24 November 2017 (2017, November)

Battery Electric Vehicles have high potentials for the modern transportations, however, they are facing limited cruising range. To address this limitation, we present a semi-autonomous ecological driver ... [more ▼]

Battery Electric Vehicles have high potentials for the modern transportations, however, they are facing limited cruising range. To address this limitation, we present a semi-autonomous ecological driver assistance system to regulate the velocity with energy-efficient techniques. The main contribution of this paper is the design of a real-time nonlinear receding horizon optimal controller to plan the online cost-effective cruising velocity. Instead of conventional L2-norms, a deadzone-quadratic penalty function for the nonlinear model predictive controller is proposed. Obtained field experimental results demonstrate the effectiveness of the proposed method for a semi-autonomous electric vehicle in terms of real-time energy-efficient velocity regulation and constraints satisfaction. [less ▲]

Detailed reference viewed: 80 (9 UL)
Full Text
Peer Reviewed
See detailRisk-averse Stochastic Nonlinear Model Predictive Control for Real-time Safety-critical Systems
Sajadi Alamdari, Seyed Amin UL; Voos, Holger UL; Darouach, Mohamed

in The 20th World Congress of the International Federation of Automatic Control, IFAC 2017 World Congress, Toulouse, France, 9-14 July 2017 (2017, July 11)

Stochastic nonlinear model predictive control has been developed to systematically find an optimal decision with the aim of performance improvement in dynamical systems that involve uncertainties. However ... [more ▼]

Stochastic nonlinear model predictive control has been developed to systematically find an optimal decision with the aim of performance improvement in dynamical systems that involve uncertainties. However, most of the current methods are risk-neutral for safety-critical systems and depend on computationally expensive algorithms. This paper investigates on the risk-averse optimal stochastic nonlinear control subject to real-time safety-critical systems. In order to achieve a computationally tractable design and integrate knowledge about the uncertainties, bounded trajectories generated to quantify the uncertainties. The proposed controller considers these scenarios in a risk-sensitive manner. A certainty equivalent nonlinear model predictive control based on minimum principle is reformulated to optimise nominal cost and expected value of future recourse actions. The capability of proposed method in terms of states regulations, constraints fulfilment, and real-time implementation is demonstrated for a semi-autonomous ecological advanced driver assistance system specified for battery electric vehicles. This system plans for a safe and energy-efficient cruising velocity profile autonomously. [less ▲]

Detailed reference viewed: 104 (8 UL)
Full Text
Peer Reviewed
See detailOn the Unknown Input Functional Observer Design via Polytopic Lyapunov Function: Application to a Quadrotor Aerial Robots Landing
Bezzaoucha, Souad UL; Voos, Holger UL; Darouach, Mohamed

in IFAC-PapersOnLine (2017, July)

In this paper, a constructive procedure to design functional unknown input observer for nonlinear continuous time systems under the Polytopic Takagi-Sugeno framework (also known as multiple models systems ... [more ▼]

In this paper, a constructive procedure to design functional unknown input observer for nonlinear continuous time systems under the Polytopic Takagi-Sugeno framework (also known as multiple models systems) is proposed. Applying the Lyapunov theory, Linear Matrix Inequalities (LMI)s conditions are deduced which are solved for feasibility to obtain observer design matrices. To reject the effect of unknown input, classical approach of decoupling the unknown input for the linear case is used. A comparative study between single and Polytopic Lyapunov function is made in order to prove the relaxation effect of the Multiple functions. A solver based solution is then proposed. It will be shown through applicative example (a Quadrotor Aerial Robots Landing) that even if the proposed LMIs solver based solution may look conservative, an adequate choice of the solver makes it suitable for the application of the proposed approach. [less ▲]

Detailed reference viewed: 47 (7 UL)
Full Text
Peer Reviewed
See detailLMI-Based H_infty Nonlinear State Observer Design for Anaerobic Digestion Model
Chaib Draa, Khadidja UL; Voos, Holger UL; Alma, Marouane et al

in IEEE Mediterranean Conference on Control and Automation, Valletta 3-6 July 2017 (2017, July)

This note deals with the design of an $H_{\infty}$ nonlinear state observer for the anaerobic digestion model. Positively, the designed observer is an unified one that can be used for different class of ... [more ▼]

This note deals with the design of an $H_{\infty}$ nonlinear state observer for the anaerobic digestion model. Positively, the designed observer is an unified one that can be used for different class of systems, mainly linear systems, Linear Parameter Varying (LPV) systems with known and bounded parameters, and nonlinear Lipschitz systems. Applying the Lyapunov theory and theH¥ criterion, Linear Matrix Inequality (LMI) condition is synthesised and solved to obtain the designed observer gains. The novelty of our work consists in the relaxation of the synthesized LMI condition through the inclusion of additional decision variables. This was possible due to the use of a suitable reformulation of the Young’s inequality. Stability, effectiveness and potency of the theoretical results are confirmed by the simulation results. [less ▲]

Detailed reference viewed: 46 (4 UL)
Full Text
Peer Reviewed
See detailFast Stochastic Non-linear Model Predictive Control for Electric Vehicle Advanced Driver Assistance Systems
Sajadi Alamdari, Seyed Amin UL; Voos, Holger UL; Darouach, Mohamed

in 13th IEEE International Conference on Vehicular Electronics and Safety, Vienna, Austria 27-28 June 2017 (2017, June 27)

Semi-autonomous driving assistance systems have a high potential to improve the safety and efficiency of the battery electric vehicles that are enduring limited cruising range. This paper presents an ... [more ▼]

Semi-autonomous driving assistance systems have a high potential to improve the safety and efficiency of the battery electric vehicles that are enduring limited cruising range. This paper presents an ecologically advanced driver assistance system to extend the functionality of the adaptive cruise control system. A real-time stochastic non-linear model predictive controller with probabilistic constraints is presented to compute on-line the safe and energy-efficient cruising velocity profile. The individual chance-constraint is reformulated into a convex second-order cone constraint which is robust for a general class of probability distributions. Finally, the performance of proposed approach in terms of states regulation, constraints fulfilment, and energy efficiency is evaluated on a battery electric vehicle. [less ▲]

Detailed reference viewed: 132 (8 UL)
Full Text
Peer Reviewed
See detailA contribution to Cyber-Security of Networked Control Systems: an Event-based Control Approach
Bezzaoucha, Souad UL; Voos, Holger UL; Darouach, Mohamed

in Proceedings of 2017 3rd International Conference on Event-Based Control, Communication and Signal Processing (EBCCSP 2017) (2017, May)

In the present paper, a networked control system under both cyber and physical attacks is considered. An adapted formulation of the problem under physical attacks, data deception and false data injection ... [more ▼]

In the present paper, a networked control system under both cyber and physical attacks is considered. An adapted formulation of the problem under physical attacks, data deception and false data injection attacks, is used for controller synthesis. Based on the classical fault tolerant detection (FTD) tools, a residual generator for attack/fault detection based on observers is proposed. An event-triggered and Bilinear Matrix Inequality (BMI) implementation is proposed in order to achieve novel and better security strategy. The purpose in using this implementation would be to reduce (limit) the total number of transmissions to only instances when the networked control system (NCS) needs attention. It is important to note that the main contribution of this paper is to establish the adequate event-triggered and BMI-based methodology so that the particular structure of the mixed attacked/faulty structure can be re-formulated within the classical FTD paradigm. Experimental results are given to illustrate the developed approach efficiency on a pilot three-tank system. The plant model is presented and the proposed control design is applied to the system. [less ▲]

Detailed reference viewed: 103 (4 UL)
Full Text
Peer Reviewed
See detailLMI-Based Discrete-Time Nonlinear State Observer for an Anaerobic Digestion Model
Chaib Draa, Khadidja UL; Voos, Holger UL; Alma, Marouane et al

in IEEE International Conference on Systems and Control, Batna 7-9 May 2017 (2017, May)

This paper deals with the design of a discrete time nonlinear observer for an anaerobic digestion process. The designed observer is devoted to a general class of systems, precisely linear systems, LPV ... [more ▼]

This paper deals with the design of a discrete time nonlinear observer for an anaerobic digestion process. The designed observer is devoted to a general class of systems, precisely linear systems, LPV systems with known and bounded parameters, and nonlinear Lipschitz systems. In order to ensure stability of the estimation error, a new LMI condition is proposed. In this LMI, additional decision variables are included to enhance its feasibility. Indeed, this was possible due to the use of a suitable reformulation of the Young’s inequality. Numerical simulations using the investigated two-step anaerobic digestion model show the effectiveness of the proposed LMI methodology. [less ▲]

Detailed reference viewed: 56 (0 UL)
Full Text
Peer Reviewed
See detailA New Polytopic Approach for the Unknown Input Functional Observer Design
Bezzaoucha, Souad UL; Voos, Holger UL; Darouach, Mohamed

in International Journal of Control (2017)

In this paper, a constructive procedure to design Functional Unknown Input Observers for nonlin ear continuous time systems is proposed under the Polytopic Takagi-Sugeno framework. An equivalent ... [more ▼]

In this paper, a constructive procedure to design Functional Unknown Input Observers for nonlin ear continuous time systems is proposed under the Polytopic Takagi-Sugeno framework. An equivalent representation for the nonlinear model is achieved using the Sector Nonlinearity Transformation (SNT). Applying the Lyapunov theory and the L2 attenuation, Linear Matrix Inequalities (LMI)s conditions are deduced which are solved for feasibility to obtain the observer design matrices. To cope with the e ffect of unknown inputs, classical approach of decoupling the unknown input for the linear case is used. Both algebraic and solver based solutions are proposed (relaxed conditions). Necessary and su fficient conditions for the existence of the functional polytopic observer are given. For both approaches, the general and particular cases (measurable premise variables, full state estimation with full and reduced order cases) are considered and it is shown that the proposed conditions correspond to the one presented for standard linear case. To illustrate the proposed theoretical results, detailed numerical simulations are presented for a Quadrotor Aerial Robots Landing and a Waste Water Treatment Plant (WWTP). Both systems are highly nonlinear and represented in a T-S polytopic form with unmeasurable premise variables and unknown inputs. [less ▲]

Detailed reference viewed: 66 (2 UL)
Full Text
Peer Reviewed
See detailChapter 4:A Survey on The Polytopic Takagi-Sugeno Approach: Application to the Inverted Pendulum
Bezzaoucha, Souad UL; Voos, Holger UL; Darouach, Mohamed

in The Inverted Pendulum: From Theory to New Innovations in Control and Robotics (2017)

This book chapter gives a general scope, states the main results obtained and methods used for the Polytopic Takagi-Sugeno approach with a detailed application to the inverted pendulum. Modeling, observer ... [more ▼]

This book chapter gives a general scope, states the main results obtained and methods used for the Polytopic Takagi-Sugeno approach with a detailed application to the inverted pendulum. Modeling, observer and controller design will be considered. [less ▲]

Detailed reference viewed: 90 (10 UL)
Full Text
Peer Reviewed
See detailObserver design for Lightweight Robotic arm actuated by Shape Memory Alloy (SMA) wire
Quintanar Guzman, Serket UL; Kannan, Somasundar UL; Voos, Holger UL et al

in Quintanar Guzman, Serket; Kannan, Somasundar; Voos, Holger (Eds.) et al 14th International Workshop on Advanced Control and Diagnosis, Bucharest, Romania, 16-17 November 2017 (2017)

Detailed reference viewed: 35 (5 UL)
Full Text
Peer Reviewed
See detailStates and unknown input estimation via non-linear sliding mode high-gain observers for a glucose-insulin system
Aguilera Gonzalez, Adriana UL; Voos, Holger UL; Darouach, Mohamed

in IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES), Kuala Lumpur, Malaysia, 2016 (2016, December 04)

A meal-estimation algorithm is developed based on an extended mathematical model of the glucose-insulin system. The proposed model describes the dynamics of glucose levels in blood and in subcutaneous ... [more ▼]

A meal-estimation algorithm is developed based on an extended mathematical model of the glucose-insulin system. The proposed model describes the dynamics of glucose levels in blood and in subcutaneous layer, as well as the meal intake which is considered an unknown input of the system. This model seeks to represent in a more realistic manner, the pancreas malfunction in patients with Type 1 Diabetes Mellitus. Based on model, a non-linear high gain observer (NHGO) with a sliding mode is designed in order to estimate the unmeasured states and the external disturbances of the system. This scheme is useful to maintain frequent monitoring of glucose levels and any changes in its behaviour. The unknown input or disturbance is estimated through the sliding mode based only the estimation error. Data from a real patient is used to evaluate the effectiveness of the proposed estimation scheme. [less ▲]

Detailed reference viewed: 49 (7 UL)