References of "Chu, Dalin"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailTwisted Edwards-Form Elliptic Curve Cryptography for 8-bit AVR-based Sensor Nodes
Chu, Dalin; Groszschädl, Johann UL; Liu, Zhe UL et al

in Chen, Kefei; Xie, Qi; Qiu, Weidong (Eds.) et al Proceedings of the first ACM Workshop on Asia Public-Key Cryptography (ASIAPKC 2013) (2013, May)

Wireless Sensor Networks (WSNs) pose a number of unique security challenges that demand innovation in several areas including the design of cryptographic primitives and protocols. Despite recent progress ... [more ▼]

Wireless Sensor Networks (WSNs) pose a number of unique security challenges that demand innovation in several areas including the design of cryptographic primitives and protocols. Despite recent progress, the efficient implementation of Elliptic Curve Cryptography (ECC) for WSNs is still a very active research topic and techniques to further reduce the time and energy cost of ECC are eagerly sought. This paper presents an optimized ECC implementation that we developed from scratch to comply with the severe resource constraints of 8-bit sensor nodes such as the MICAz and IRIS motes. Our ECC software uses Optimal Prime Fields (OPFs) as underlying algebraic structure and supports two different families of elliptic curves, namely Weierstraß-form and twisted Edwards-form curves. Due to the combination of efficient field arithmetic and fast group operations, we achieve an execution time of 5.8*10^6 clock cycles for a full 158-bit scalar multiplication on an 8-bit ATmega128 microcontroller, which is 2.78 times faster than the widely-used TinyECC library. Our implementation also shows that the energy cost of scalar multiplication on a MICAz (or IRIS) mote amounts to just 19 mJ when using a twisted Edwards curve over a 160-bit OPF. This result compares fairly well with the energy figures of two recently-presented hardware designs of ECC based on twisted Edwards curves. [less ▲]

Detailed reference viewed: 277 (41 UL)