References of "Bui, T. Q"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailComputational chemo-thermo-mechanical coupling phase-field model for complex fracture induced by early-age shrinkage and hydration heat in cement-based materials
Nguyen, Thanh Tung UL; Waldmann, Danièle UL; Bui, T. Q.

in Computer Methods in Applied Mechanics and Engineering (2019), 348

In this paper, we present a new multi-physics computational framework that enables us to capture and investigate complex fracture behavior in cement-based materials at early-age. The present model ... [more ▼]

In this paper, we present a new multi-physics computational framework that enables us to capture and investigate complex fracture behavior in cement-based materials at early-age. The present model consists of coupling the most important chemo-thermo-mechanical processes to describe temperature evolution, variation of hydration degree, and mechanical behavior. The changes of material properties are expressed as a function of the hydration degree, to capture the age effects. Fracture analysis of these processes are then accommodated by a versatile phase field model in the framework of smeared crack models, addressing the influence of cracks on hydration and thermal transfer. We additionally describe a stable and robust numerical algorithm, which aims to solve coupled problems by using a staggered scheme. The developed approach is applied to study the fracture phenomena at both macroscopic and mesoscopic scales, in which all microstructural heterogeneities of sand and cement matrix are explicitly accounted. Nucleation, initiation, and propagation of complex crack network are simulated in an efficient way demonstrating the potential of the proposed approach to assess the early-age defects in concrete structures and materials. [less ▲]

Detailed reference viewed: 143 (26 UL)
Full Text
Peer Reviewed
See detailRole of interfacial transition zone in phase field modeling of fracture in layered heterogeneous structures
Nguyen, Thanh Tung UL; Waldmann, Danièle UL; Bui, T. Q.

in Journal of Computational Physics (2019), 386

Mechanical behavior of layered materials and structures greatly depends on the mechanical behavior of interfaces. In the past decades, the failure in such layered media has been studied by many ... [more ▼]

Mechanical behavior of layered materials and structures greatly depends on the mechanical behavior of interfaces. In the past decades, the failure in such layered media has been studied by many researchers due to their critical role in the mechanics and physics of solids. This study aims at investigating crack-interface interaction in two-dimensional (2-D) and three-dimensional (3-D) layered media by a phase field model. Our objectives are fourfold: (a) to better understand fracture behavior in layered heterogeneous systems under quasi-static load; (b) to introduce a new methodology for better describing interfaces by a regularized interfacial transition zone in the context of varia-tional phase field approach, exploring its important role; (c) to show the accuracy , performance and applicability of the present model in modeling material failure at the interfaces in both 2-D and 3-D bodies; and (d) to quantitatively validate computed crack path with respect to experimental data. Phase field models with both perfectly and cohesive bonded interfaces are thus derived. A regularized interfacial transition zone is introduced to capture characteristics of material mismatch at the interfaces. Numerical examples for 2-D and 3-D layered systems with experimental validation provide fundamentals of fracture behavior in layered structures. The obtained results shed light on the behavior of crack paths, which are drastically affected by the elastic modulus mismatch between two layers and interface types, and reveal the important role of the proposed interfacial transition zone in phase field modeling of crack interface interactions. [less ▲]

Detailed reference viewed: 141 (22 UL)
Full Text
Peer Reviewed
See detailMulti-inclusions modeling by adaptive XIGA based on LR B-splines and multiple level sets
Gu, J.; Yu, T. T.; Le, V. L. et al

in Finite Elements in Analysis and Design (2018), 148

Detailed reference viewed: 32 (0 UL)
Full Text
Peer Reviewed
See detailStructural shape optimization by IGABEM and particle swarm optimization algorithm
Sun, S. H.; Yu, T. T.; Nguyen, Thanh Tung UL et al

in Engineering Analysis with Boundary Elements (2018), 88

Detailed reference viewed: 44 (0 UL)
Full Text
Peer Reviewed
See detailAdaptive multi-patch isogeometric analysis based on locally refined B-splines
Gu, J.; Yu, T. T.; Le, V. L. et al

in Computer Methods in Applied Mechanics and Engineering (2018), 339

Detailed reference viewed: 26 (1 UL)
Full Text
Peer Reviewed
See detailPhase field simulation of early-age fracture in cement-based materials
Nguyen, Thanh Tung UL; Waldmann, Danièle UL; Bui, T. Q.

E-print/Working paper (2018)

Detailed reference viewed: 50 (14 UL)
Full Text
Peer Reviewed
See detailNURBS-based finite element analysis of functionally graded plates: Static bending, vibration, buckling and flutter
Valizadeh, N.; Natarajan, S.; Gonzalez-Estrada, O. A. et al

in Composite Structures (2013), 99

In this paper, a non-uniform rational B-spline based iso-geometric finite element method is used to study the static and dynamic characteristics of functionally graded material (FGM) plates. The material ... [more ▼]

In this paper, a non-uniform rational B-spline based iso-geometric finite element method is used to study the static and dynamic characteristics of functionally graded material (FGM) plates. The material properties are assumed to be graded only in the thickness direction and the effective properties are computed either using the rule of mixtures or by Mori-Tanaka homogenization scheme. The plate kinematics is based on the first order shear deformation plate theory (FSDT). The shear correction factors are evaluated employing the energy equivalence principle and a simple modification to the shear correction factor is presented to alleviate shear locking. Static bending, mechanical and thermal buckling, linear free flexural vibration and supersonic flutter analysis of FGM plates are numerically studied. The accuracy of the present formulation is validated against available three-dimensional solutions. A detailed numerical study is carried out to examine the influence of the gradient index, the plate aspect ratio and the plate thickness on the global response of functionally graded material plates. © 2012 Elsevier Ltd. [less ▲]

Detailed reference viewed: 257 (2 UL)