References of "Berciaud, Stéphane"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailQuantum Interference Effects in Resonant Raman Spectroscopy of Single- and Triple-Layer MoTe2 from First-Principles
Pereira Coutada Miranda, Henrique UL; Reichardt, Sven UL; Froehlicher, Guillaume et al

in Nano Letters (2017), 17(4), 2381--2388

We present a combined experimental and theoretical study of resonant Raman spectroscopy in single- and triple-layer MoTe2. Raman intensities are computed entirely from first-principles by calculating ... [more ▼]

We present a combined experimental and theoretical study of resonant Raman spectroscopy in single- and triple-layer MoTe2. Raman intensities are computed entirely from first-principles by calculating finite differences of the dielectric susceptibility. In our analysis, we investigate the role of quantum interference effects and the electron−phonon coupling. With this method, we explain the experimentally observed intensity inversion of the A′1 vibrational modes in triple-layer MoTe2 with increasing laser photon energy. Finally, we show that a quantitative comparison with experimental data requires the proper inclusion of excitonic effects. [less ▲]

Detailed reference viewed: 74 (10 UL)
Full Text
Peer Reviewed
See detailUnified Description of the Optical Phonon Modes in N-Layer MoTe2
Froehlicher, Guillaume; Lorchat, Etienne; Fernique, François et al

in Nano Letters (2015), 15

N-layer transition metal dichalcogenides provide a unique platform to investigate the evolution of the physical properties between the bulk (three-dimensional) and monolayer (quasi-two-dimensional) limits ... [more ▼]

N-layer transition metal dichalcogenides provide a unique platform to investigate the evolution of the physical properties between the bulk (three-dimensional) and monolayer (quasi-two-dimensional) limits. Here, using high-resolution micro-Raman spectroscopy, we report a unified experimental description of the Γ-point optical phonons in N-layer 2H-molybdenum ditelluride (MoTe2). We observe series of N-dependent low-frequency interlayer shear and breathing modes (below 40 cm–1, denoted LSM and LBM) and well-defined Davydov splittings of the mid-frequency modes (in the range 100–200 cm–1, denoted iX and oX), which solely involve displacements of the chalcogen atoms. In contrast, the high-frequency modes (in the range 200–300 cm–1, denoted iMX and oMX), arising from displacements of both the metal and chalcogen atoms, exhibit considerably reduced splittings. The manifold of phonon modes associated with the in-plane and out-of-plane displacements are quantitatively described by a force constant model, including interactions up to the second nearest neighbor and surface effects as fitting parameters. The splittings for the iX and oX modes observed in N-layer crystals are directly correlated to the corresponding bulk Davydov splittings between the E2u/E1g and B1u/A1g modes, respectively, and provide a measurement of the frequencies of the bulk silent E2u and B1u optical phonon modes. Our analysis could readily be generalized to other layered crystals [less ▲]

Detailed reference viewed: 141 (9 UL)