References of "Beex, Lars 50000691"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailEstimating fibres' material parameter distributions from limited data with the help of Bayesian inference
Rappel, Hussein UL; Beex, Lars UL

in European Journal of Mechanics. A, Solids (2019), 75

Numerous materials are essentially structures of discrete fibres, yarns or struts. Considering these materials at their discrete scale, one may distinguish two types of intrinsic randomness that affect ... [more ▼]

Numerous materials are essentially structures of discrete fibres, yarns or struts. Considering these materials at their discrete scale, one may distinguish two types of intrinsic randomness that affect the structural behaviours of these discrete structures: geometrical randomness and material randomness. Identifying the material randomness is an experimentally demanding task, because many small fibres, yarns or struts need to be tested, which are not easy to handle. To avoid the testing of hundreds of constituents, this contribution proposes an identification approach that only requires a few dozen of constituents to be tested (we use twenty to be exact). The identification approach is applied to articially generated measurements, so that the identified values can be compared to the true values. Another question this contribution aims to answer is how precise the material randomness needs to be identified, if the geometrical randomness will also influence the macroscale behaviour of these discrete networks. We therefore also study the effect of the identified material randomness to that of the actual material randomness for three types of structures; each with an increasing level of geometrical randomness. [less ▲]

Detailed reference viewed: 72 (20 UL)
Full Text
Peer Reviewed
See detailA Tutorial on Bayesian Inference to Identify Material Parameters in Solid Mechanics
Rappel, Hussein UL; Beex, Lars UL; Hale, Jack UL et al

in Archives of Computational Methods in Engineering (2019)

The aim of this contribution is to explain in a straightforward manner how Bayesian inference can be used to identify material parameters of material models for solids. Bayesian approaches have already ... [more ▼]

The aim of this contribution is to explain in a straightforward manner how Bayesian inference can be used to identify material parameters of material models for solids. Bayesian approaches have already been used for this purpose, but most of the literature is not necessarily easy to understand for those new to the field. The reason for this is that most literature focuses either on complex statistical and machine learning concepts and/or on relatively complex mechanical models. In order to introduce the approach as gently as possible, we only focus on stress–strain measurements coming from uniaxial tensile tests and we only treat elastic and elastoplastic material models. Furthermore, the stress–strain measurements are created artificially in order to allow a one-to-one comparison between the true parameter values and the identified parameter distributions. [less ▲]

Detailed reference viewed: 259 (46 UL)
Full Text
Peer Reviewed
See detailIdentifying elastoplastic parameters with Bayes' theorem considering double error sources and model uncertainty
Rappel, Hussein UL; Beex, Lars UL; Noels, Ludovic et al

in Probabilistic Engineering Mechanics (2019), 55

We discuss Bayesian inference for the identi cation of elastoplastic material parameters. In addition to errors in the stress measurements, which are commonly considered, we furthermore consider errors in ... [more ▼]

We discuss Bayesian inference for the identi cation of elastoplastic material parameters. In addition to errors in the stress measurements, which are commonly considered, we furthermore consider errors in the strain measurements. Since a difference between the model and the experimental data may still be present if the data is not contaminated by noise, we also incorporate the possible error of the model itself. The three formulations to describe model uncertainty in this contribution are: (1) a random variable which is taken from a normal distribution with constant parameters, (2) a random variable which is taken from a normal distribution with an input-dependent mean, and (3) a Gaussian random process with a stationary covariance function. Our results show that incorporating model uncertainty often, but not always, improves the results. If the error in the strain is considered as well, the results improve even more. [less ▲]

Detailed reference viewed: 133 (34 UL)
Full Text
See detailAn equation-free, nested, concurrent multiscale approach without scale-separation
Beex, Lars UL; Kerfriden, Pierre

Scientific Conference (2018, September)

Detailed reference viewed: 34 (0 UL)
Full Text
Peer Reviewed
See detailClassification of states and model order reduction of large scale Chemical Vapor Deposition processes with solution multiplicity
Koronaki, E.D.; Gkinis, P.A.; Beex, Lars UL et al

in Computers and Chemical Engineering (2018), 121

This paper presents an equation-free, data-driven approach for reduced order modeling of a Chemical Vapor Deposition (CVD) process. The proposed approach is based on process information provided by ... [more ▼]

This paper presents an equation-free, data-driven approach for reduced order modeling of a Chemical Vapor Deposition (CVD) process. The proposed approach is based on process information provided by detailed, high-fidelity models, but can also use spatio-temporal measurements. The Reduced Order Model (ROM) is built using the method-of-snapshots variant of the Proper Orthogonal Decomposition (POD) method and Artificial Neural Networks (ANN) for the identification of the time-dependent coefficients. The derivation of the model is completely equation-free as it circumvents the projection of the actual equations onto the POD basis. Prior to building the model, the Support Vector Machine (SVM) supervised classification algorithm is used in order to identify clusters of data corresponding to (physically) different states that may develop at the same operating conditions due to the inherent nonlinearity of the process. The different clusters are then used for ANN training and subsequent development of the ROM. The results indicate that the ROM is successful at predicting the dynamic behavior of the system in windows of operating parameters where steady states are not unique. [less ▲]

Detailed reference viewed: 16 (3 UL)
Full Text
See detailMultiscale Modeling of Discrete Mesomodels for Dry-Woven Fabrics
Magliulo, Marco UL; Beex, Lars UL; Zilian, Andreas UL

Scientific Conference (2018, March)

Detailed reference viewed: 17 (0 UL)
Full Text
See detailA hyper-reduction method using adaptivity to cut the assembly costs of reduced order models
Hale, Jack UL; Schenone, Elisa; Baroli, Davide UL et al

E-print/Working paper (2018)

At every iteration or timestep of the online phase of some reduced-order modelling schemes, large linear systems must be assembled and then projected onto a reduced order basis of small dimension. The ... [more ▼]

At every iteration or timestep of the online phase of some reduced-order modelling schemes, large linear systems must be assembled and then projected onto a reduced order basis of small dimension. The projected small linear systems are cheap to solve, but assembly and projection are now the dominant computational cost. In this paper we introduce a new hyper-reduction strategy called reduced assembly (RA) that drastically cuts these costs. RA consists of a triangulation adaptation algorithm that uses a local error indicator to con- struct a reduced assembly triangulation specially suited to the reduced order basis. Crucially, this reduced assembly triangulation has fewer cells than the original one, resulting in lower assembly and projection costs. We demonstrate the efficacy of RA on a Galerkin-POD type reduced order model (RAPOD). We show performance increases of up to five times over the baseline Galerkin-POD method on a non-linear reaction-diffusion problem solved with a semi-implicit time-stepping scheme and up to seven times for a 3D hyperelasticity problem solved with a continuation Newton-Raphson algorithm. The examples are implemented in the DOLFIN finite element solver using PETSc and SLEPc for linear algebra. Full code and data files to produce the results in this paper are provided as supplementary material. [less ▲]

Detailed reference viewed: 93 (18 UL)
Full Text
Peer Reviewed
See detailAn adaptive variational Quasicontinuum methodology for lattice networks with localized damage
Rokos, Ondrej; Peerlings, Ron; Zeman, Jan et al

in International Journal for Numerical Methods in Engineering (2017), 112(2),

Lattice networks with dissipative interactions can be used to describe the mechanics of discrete meso‐structures of materials such as 3D‐printed structures and foams. This contribution deals with the ... [more ▼]

Lattice networks with dissipative interactions can be used to describe the mechanics of discrete meso‐structures of materials such as 3D‐printed structures and foams. This contribution deals with the crack initiation and propagation in such materials and focuses on an adaptive multiscale approach that captures the spatially evolving fracture. Lattice networks naturally incorporate non‐locality, large deformations and dissipative mechanisms taking place inside fracture zones. Because the physically relevant length scales are significantly larger than those of individual interactions, discrete models are computationally expensive. The Quasicontinuum (QC) method is a multiscale approach specifically constructed for discrete models. This method reduces the computational cost by fully resolving the underlying lattice only in regions of interest, while coarsening elsewhere. In this contribution, the (variational) QC is applied to damageable lattices for engineering‐scale predictions. To deal with the spatially evolving fracture zone, an adaptive scheme is proposed. Implications induced by the adaptive procedure are discussed from the energy‐consistency point of view, and theoretical considerations are demonstrated on two examples. The first one serves as a proof of concept, illustrates the consistency of the adaptive schemes and presents errors in energies. The second one demonstrates the performance of the adaptive QC scheme for a more complex problem. [less ▲]

Detailed reference viewed: 26 (0 UL)
Full Text
See detailMultiscale Modelling of Damage and Fracture in Discrete Materials Using a Variational Quasicontinuum Method
Rokos, Ondrej; Peerlings, Ron; Beex, Lars UL et al

Scientific Conference (2017, September 05)

Detailed reference viewed: 35 (1 UL)
Full Text
Peer Reviewed
See detailBayesian inference to identify parameters in viscoelasticity
Rappel, Hussein UL; Beex, Lars UL; Bordas, Stéphane UL

in Mechanics of Time-Dependent Materials (2017)

This contribution discusses Bayesian inference (BI) as an approach to identify parameters in viscoelasticity. The aims are: (i) to show that the prior has a substantial influence for viscoelasticity, (ii ... [more ▼]

This contribution discusses Bayesian inference (BI) as an approach to identify parameters in viscoelasticity. The aims are: (i) to show that the prior has a substantial influence for viscoelasticity, (ii) to show that this influence decreases for an increasing number of measurements and (iii) to show how different types of experiments influence the identified parameters and their uncertainties. The standard linear solid model is the material description of interest and a relaxation test, a constant strain-rate test and a creep test are the tensile experiments focused on. The experimental data are artificially created, allowing us to make a one-to-one comparison between the input parameters and the identified parameter values. Besides dealing with the aforementioned issues, we believe that this contribution forms a comprehensible start for those interested in applying BI in viscoelasticity. [less ▲]

Detailed reference viewed: 379 (159 UL)
Full Text
See detaileXtended Variational Quasicontinuum Methodology for Modelling of Crack Propagation in Discrete Lattice Systems
Rokos, Ondrej; Peerlings, Ron; Zeman, Jan et al

Scientific Conference (2017, July 17)

Detailed reference viewed: 23 (0 UL)
Full Text
See detailAn equation-free multiscale method: a result of extending the quasicontinuum method to irregular structures
Beex, Lars UL; Kerfriden, Pierre

Scientific Conference (2017, July 16)

Detailed reference viewed: 34 (1 UL)
Full Text
See detailAn Enriched Quasi-Continuum Approach to Crack Propagation in Discrete Lattices
Rokos, Ondrej; Peerlings, Ron; Zeman, Jan et al

Scientific Conference (2017, June 14)

Detailed reference viewed: 33 (0 UL)
Full Text
See detailAn equation-free multiscale method applied to discrete networks
Beex, Lars UL; Kerfriden, Pierre

Scientific Conference (2017, June 06)

Detailed reference viewed: 37 (3 UL)
Full Text
Peer Reviewed
See detailReduced basis Nitsche-based domain decomposition: a biomedical application
Baroli, Davide UL; Beex, Lars UL; Hale, Jack UL et al

Scientific Conference (2017, March 10)

Nowadays, the personalized biomedical simulations demand real-time efficient and reliable method to alleviate the computational complexity of high-fidelity simulation. In such applications, the necessity ... [more ▼]

Nowadays, the personalized biomedical simulations demand real-time efficient and reliable method to alleviate the computational complexity of high-fidelity simulation. In such applications, the necessity of solving different substructure, e.g. tissues or organs, with different numbers of the degrees of freedom and of coupling the reduced order spaces for each substructure poses a challenge in the on-fly simulation. In this talk, this challenge is taken into account employing the Nitsche-based domain decomposition technique inside the reduced order model [1]. This technique with respect to other domain decomposition approach allows obtaining a solution with the same accuracy of underlying finite element formulation and to flexibly treat interface with non-matching mesh. The robustness of the coupling is determined by the penalty coefficients that is chosen using ghost penalty technique [2]. Furthermore, to reduce the computational complexity of the on-fly assembling it is employed the empirical interpolation approach proposed in [3]. The numerical tests, performed using FEniCS[4], petsc4py and slepc4py [5], shows the good performance of the method and the reduction of computation cost. [1] Baroli, D., Beex L. and Bordas, S. Reduced basis Nitsche-based domain decomposition. In preparation. [2] Burman, E., Claus, S., Hansbo, P., Larson, M. G., & Massing, A. (2015). CutFEM: Discretizing geometry and partial differential equations. International Journal for Numerical Methods in Engineering, 104(7), 472-501. [3] E. Schenone, E., Beex,L., Hale, J.S., Bordas S. Proper Orthogonal Decomposition with reduced integration method. Application to nonlinear problems. In preparation. [4] A. Logg, K.-A. Mardal, G. N. Wells et al. Automated Solution of Differential Equations by the Finite Element Method, Springer 2012. [5] L. Dalcin, P. Kler, R. Paz, and A. Cosimo, Parallel Distributed Computing using Python, Advances in Water Resources, 34(9):1124-1139, 2011. http://dx.doi.org/10.1016/j.advwatres.2011.04.013 [less ▲]

Detailed reference viewed: 214 (10 UL)
Full Text
Peer Reviewed
See detailA variational formulation of dissipative quasicontinuum methods
Rokos, Ondrej; Beex, Lars UL; Peerlings, Ron et al

in International Journal of Solids and Structures (2016), 102-103

Lattice systems and discrete networks with dissipative interactions are successfully employed as meso-scale models of heterogeneous solids. As the application scale generally is much larger than that of ... [more ▼]

Lattice systems and discrete networks with dissipative interactions are successfully employed as meso-scale models of heterogeneous solids. As the application scale generally is much larger than that of the discrete links, physically relevant simulations are computationally expensive. The QuasiContinuum (QC) method is a multiscale approach that reduces the computational cost of direct numerical simulations by fully resolving complex phenomena only in regions of interest while coarsening elsewhere. In previous work (Beex et al., J. Mech. Phys. Solids 64, 154-169, 2014), the originally conservative QC methodology was generalized to a virtual-power-based QC approach that includes local dissipative mechanisms. In this contribution, the virtual-power-based QC method is reformulated from a variational point of view, by employing the energy-based variational framework for rate-independent processes (Mielke and Roub cek, Rate-Independent Systems: Theory and Application, Springer-Verlag, 2015). By construction it is shown that the QC method with dissipative interactions can be expressed as a minimization problem of a properly built energy potential, providing solutions equivalent to those of the virtual-power-based QC formulation. The theoretical considerations are demonstrated on three simple examples. For them we verify energy consistency, quantify relative errors in energies, and discuss errors in internal variables obtained for different meshes and two summation rules. [less ▲]

Detailed reference viewed: 71 (8 UL)
Full Text
See detailBayesian inference for parameter identification in computational mechanics
Rappel, Hussein UL; Beex, Lars UL; Hale, Jack UL et al

Poster (2016, December 12)

Detailed reference viewed: 138 (9 UL)