References of "Baniasadi, Mehdi 50008503"
     in
Bookmark and Share    
Peer Reviewed
See detailThe Extented Discrete Element Method (XDEM): An Advanced Approach to Model Blast Furnace
Peters, Bernhard UL; Maryam, Baniasadi; Baniasadi, Mehdi UL

in Iron Ores and Iron Oxide Materials (2018)

The blast furnace iron making is the oldest but still the main method to produce liquid iron through sequential reduction processes of iron ore materials. Despite the existence of several discrete and ... [more ▼]

The blast furnace iron making is the oldest but still the main method to produce liquid iron through sequential reduction processes of iron ore materials. Despite the existence of several discrete and continuous numerical models, there is no global method to provide detailed information about the processes inside the furnaces. The extended discrete element method known as XDEM is an advance numerical tool based on Eulerian – Lagrangian framework which is able to cover more information about the blast furnace process. Within this plat- form, the continuous phases such as gas and liquid phases are coupled to the discrete entities such as coke and iron ore particles through mass, momentum and energy exchange. This method has been applied to the shaft, cohesive zone, dripping zone and hearth of the blast furnace. In this chapter, the mathematical and numerical methods implemented in the XDEM method are described, and the results are discussed. [less ▲]

Detailed reference viewed: 31 (5 UL)
See detailSoftening and melting modeling of iron ore particles using a discrete - continuous coupling method
Baniasadi, Mehdi UL; Baniasadi, Maryam; Peters, Bernhard UL

Scientific Conference (2018, June 13)

The blast furnace iron making is the main method to produce liquid iron. A blast furnace is charged with ore and coke from the top along with a preheated gas introduced to the furnace through the tuyeres ... [more ▼]

The blast furnace iron making is the main method to produce liquid iron. A blast furnace is charged with ore and coke from the top along with a preheated gas introduced to the furnace through the tuyeres in the lower part. The combustion of coke generates reducing gas ascending through the blast furnace to reduce iron-bearing materials. The reduced iron-bearing particles start softening and melting because of the weight of burden above and the high temperature in the middle of the blast furnace so-called cohesive zone. In this region, as particles are softened, the void space between particles decreases. As the temperature increases further, the softened particles start melting and generate two different liquids: molten iron and slag. Then the generated liquids trickle down to the lower part of the blast furnace. The softening and melting process forms the impermeable ferrous layers forcing gas to flow horizontally through the permeable coke windows. This causes a high-pressure drop. Softening and melting has a big effect on the operation of the blast furnace and since it is not possible to interrupt the blast furnace to investigate details of the phenomena occurring inside, the numerical simulation becomes more practical. In this contribution, the eXtended Discrete Element Method (XDEM) [1] as an advanced numerical tool based on the Eulerian-Lagrangian framework, is used. Within this platform, the gas and liquid phases are described by computational fluid dynamics (CFD) and the soft-sphere discrete element approach (DEM) is used for the coke and iron ore particles. Continuous phases are coupled to the discrete entities through mass, momentum, and energy exchange. Moreover, the internal temperature distribution of the particles is described. Therefore, the XDEM is able to model multiphase and multiscale phenomena as can occur in the cohesive zone. The particle's deformation, temperature, melting, and shrinking along with gas and liquids pressure, temperature and velocity patterns are examined using the XDEM method. [less ▲]

Detailed reference viewed: 20 (0 UL)
Full Text
Peer Reviewed
See detailHydrodynamic Analysis of Gas-Liquid-Liquid-Solid Reactors using the XDEM Numerical Approach
Baniasadi, Maryam UL; Peters, Bernhard UL; Baniasadi, Mehdi UL et al

in Canadian Journal of Chemical Engineering (2018)

Multiphase reactors are abundantly used in many industries. Among them, few reactors deal with four phases called gas-liquid-liquid-solid systems, which received less attention due to their complex ... [more ▼]

Multiphase reactors are abundantly used in many industries. Among them, few reactors deal with four phases called gas-liquid-liquid-solid systems, which received less attention due to their complex situation. Numerical study of such complex systems is not easy and requires loads of computational effort. In this study, a discrete-continuous numerical model known as eXtended discrete element method (XDEM) is proposed to investigate the hydrodynamic behaviour of fluid phases passing through the packed bed of solid particles. This model is applied to the dripping zone of a blast furnace. In this zone, two distinct liquid phases, namely liquid iron and slag, flow through a pile of coke particles while exchanging momentum. In this work, besides the solid-fluid and gas-liquid interactions, the liquid-liquid interactions are also studied and the phases' mutual effects are discussed. In addition, a sensitivity study on the slag viscosity is performed, which shows the importance of liquid phase properties on the system behaviour. The results evaluation shows that the liquid iron accelerates the downward flow of the slag and the slag decelerates the downward flow of the liquid iron phase due to the resistance force caused by their relative velocity. [less ▲]

Detailed reference viewed: 52 (15 UL)
Full Text
Peer Reviewed
See detailCoupled CFD-DEM with Heat and Mass transfer to Investigate the Melting of a Granular Packed Bed
Baniasadi, Mehdi UL; Baniasadi, Maryam UL; Peters, Bernhard UL

in Chemical Engineering Science (2017)

The eXtended Discrete Element Method (XDEM) platform which is a Coupled Eulerian-Lagrangian framework with heat and mass transfer, is extended for melting of granular packed beds. In this method, the ... [more ▼]

The eXtended Discrete Element Method (XDEM) platform which is a Coupled Eulerian-Lagrangian framework with heat and mass transfer, is extended for melting of granular packed beds. In this method, the fluid is simulated by computational fluid dynamics (CFD) and the soft-sphere discrete element approach (DEM) is used for the particle system. A four-way coupling accounts for solid-liquid interaction via drag and buoyancy forces and the collisions between the particles and the walls. The contact forces between the particles and wall-particle contacts have been calculated by the hertz-mindlin model. The particles heat up, melt and shrink due to heat and mass exchange, and the temperature distributions inside the particles are described. In order to validate the method, melting of a single ice particle and of a packed bed of ice in flowing water have been carried out. Very good agreement between the simulation and experiment has been achieved. The effects of the temperature and velocity of flowing water on melting rate are also discussed. [less ▲]

Detailed reference viewed: 81 (17 UL)
Full Text
Peer Reviewed
See detailConversion analysis of a cylindrical biomass particle with a DEM-CFD coupling approach
Mohseni, Mohammad UL; Peters, Bernhard UL; Baniasadi, Mehdi UL

in Case Studies in Thermal Engineering (2017), 10

Detailed reference viewed: 16 (4 UL)
See detailApplication of the extended discrete element method (XDEM) in the melting of a single particle
Baniasadi, Mehdi UL; Baniasadi, Maryam UL; Peters, Bernhard UL

in Baniasadi, Mehdi (Ed.) Application of the extended discrete element method (XDEM) in the melting of a single particle (2016, July 19)

In this contribution, a new method referred to as Extended Discrete Element Method (XDEM) is usedto model melting of a single particle in the fluid media. The XDEM as a Lagrangian-Eulerian framework is ... [more ▼]

In this contribution, a new method referred to as Extended Discrete Element Method (XDEM) is usedto model melting of a single particle in the fluid media. The XDEM as a Lagrangian-Eulerian framework is the extension of Discrete Element Method (DEM) by considering thermodynamic state such as temperature distribution and is able to link with Computational Fluid Dynamics (CFD) for fluid phase. In order to provide more accurate results, multiscale method was used. The model is validated by comparing predicted results with existing experimental data for melting of a single ice particle in a water bath. In addition, the model has the capability to be extended to the packed bed of particles with different size and properties to produce different liquid phases. [less ▲]

Detailed reference viewed: 67 (22 UL)