References of "Babbe, Finn 50008601"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailHigh‐performance low bandgap thin film solar cells for tandem applications
Elanzeery, Hossam UL; Babbe, Finn UL; Melchiorre, Michele UL et al

in Progress in Photovoltaics (2018)

Thin film tandem solar cells provide a promising approach to achieve high efficiencies. These tandem cells require at least a bottom low bandgap and an upper high bandgap solar cell. In this contribution ... [more ▼]

Thin film tandem solar cells provide a promising approach to achieve high efficiencies. These tandem cells require at least a bottom low bandgap and an upper high bandgap solar cell. In this contribution, 2 high‐performance Cu(In,Ga)Se2 cells with bandgaps as low as 1.04 and 1.07 eV are presented. These cells have shown certified efficiencies of 15.7% and 16.6% respectively. Measuring these cells under a 780‐nm longpass filter, corresponding to the bandgap of a typical top cell in tandem applications (1.57 eV), they achieved efficiencies of 7.9% and 8.3%. Admittance measurements showed no recombination active deep defects. One additional high‐performance CuInSe2 thin film solar cell with bandgap of 0.95 eV and efficiency of 14.1% is presented. All 3 cells have the potential to be integrated as bottom low bandgap cells in thin film tandem applications achieving efficiencies around 24% stacked with an efficient high bandgap top cell. [less ▲]

Detailed reference viewed: 29 (1 UL)
Full Text
Peer Reviewed
See detailSynthesis, theoretical and experimental characterisation of thin film Cu2Sn1-xGexS3 ternary alloys (x = 0 to 1): Homogeneous intermixing of Sn and Ge
Robert, Erika UL; Gunder, René; De Wild, Jessica UL et al

in Acta Materialia (2018), 151

Cu2Sn1-xGexS3 is a p-type semiconductor alloy currently investigated for use as an absorber layer in thin film solar cells. The aim of this study is to investigate the properties of this alloy in thin ... [more ▼]

Cu2Sn1-xGexS3 is a p-type semiconductor alloy currently investigated for use as an absorber layer in thin film solar cells. The aim of this study is to investigate the properties of this alloy in thin film form in order to establish relationships between group IV composition and structural, vibrational and opto-electronic properties. Seven single phase Cu2Sn1-xGexS3 films are prepared from x ¼ 0 to 1, showing a uniform distribution of Ge and Sn laterally and in depth. The films all show a monoclinic crystal structure. The lattice parameters are extracted using Le Bail refinement and show a linear decrease with increasing Ge content. Using density-functional theory with hybrid functionals, we calculate the Raman active phonon frequencies of Cu2SnS3 and Cu2GeS3. For the alloyed compounds, we use a virtual atom approximation. The shift of the main Raman peak from x ¼ 0 to x ¼ 1 can be explained as being half due to the change in atomic masses and half being due to the different bond strength. The bandgaps of the alloys are extracted from photoluminescence measurements and increase linearly from about 0.90 to 1.56 eV with increasing Ge. The net acceptor density of all films is around 1018 cm 3. These analyses have established that the alloy forms a solid solution over the entire composition range meaning that intentional band gap grading should be possible for future absorber layers. The linear variation of the unit cell parameters and the band gap with group IV content allows composition determination by scattering or optical measurements. Further research is required to reduce the doping density by two orders of magnitude in order to improve the current collection within a solar cell device structure. [less ▲]

Detailed reference viewed: 105 (15 UL)
Full Text
Peer Reviewed
See detailThe promise of solution-processed Fe2GeS4 thin films in iron chalcogenide photovoltaics
Liu, Mimi; Berg, Dominik M.; Hwang, Po-Yu et al

in Journal of Materials Science (2018)

The olivine Fe2GeS4, featuring non-toxic elements, cost-effective synthesis, and suitable optoelectronic properties, recently emerged as a promising light-absorbing candidate. Fe2GeS4 precursor powders ... [more ▼]

The olivine Fe2GeS4, featuring non-toxic elements, cost-effective synthesis, and suitable optoelectronic properties, recently emerged as a promising light-absorbing candidate. Fe2GeS4 precursor powders obtained via a simple solutionbased process were converted to highly crystalline Fe2GeS4 powders upon a thermal treatment in controlled atmosphere. Thin films fabricated by dip coating in the Fe2GeS4 precursor dispersion and subjected to the same thermal treatment render high-purity Fe2GeS4 thin films with a band gap of 1.4 eV, measured by room-temperature photoluminescence. Using Fe2GeS4 thin films as the sole absorber in a solution-based solar cell, open-circuit voltages of 361 mV are observed, while the use of the Fe2GeS4 films as counter electrodes in dyesensitized solar cell constructs enhances the overall power conversion efficiency of the cell by a factor of five. This is the first report of a photovoltaic device based on Fe2GeS4. [less ▲]

Detailed reference viewed: 36 (0 UL)
Full Text
Peer Reviewed
See detailAbsorption Coefficient of a Semiconductor Thin Film from Photoluminescence
Rey, Germain UL; Spindler, Conrad UL; Rachad, Wafae UL et al

in Physical Review Applied (2018), 9

Detailed reference viewed: 12 (1 UL)
Full Text
Peer Reviewed
See detailOptoelectronic and Spectroscopic Characterization of Vapour-Transport Grown Cu2ZnSnS4 Single Crystals
Tat Ming Ng; Weller, Mark T.; Kissling, Gabriela P. et al

in Journal of Materials Chemistry A (2017)

Detailed reference viewed: 68 (2 UL)
Full Text
Peer Reviewed
See detailPotassium fluoride ex-situ treatment on both Cu-rich and Cu-poor CuInSe2 thin film solar cells
Elanzeery, Hossam UL; Babbe, Finn UL; Melchiorre, Michele UL et al

in IEEE Journal of Photovoltaics (2017), 7(2), 684-689

Detailed reference viewed: 160 (12 UL)
Full Text
Peer Reviewed
See detailSilver Doped Cu2SnS3 Absorber Layers for Solar Cells Application
De Wild, Jessica UL; Babbe, Finn UL; Robert, Erika UL et al

in IEEE Journal of Photovoltaics (2017)

Detailed reference viewed: 82 (5 UL)
Full Text
Peer Reviewed
See detailPost-deposition treatment of Cu2ZnSnSe4 with alkalis
Rey, Germain UL; Babbe, Finn UL; Weiss, Thomas UL et al

in Thin Solid Films (2016), 633

Low temperature post-deposition treatment of Cu2ZnSnSe4 with NaF and KF significantly improved the solar cell efficiency (from 6.4% to 7.8% and 7.7% on average, respectively) due to enhanced fill factor ... [more ▼]

Low temperature post-deposition treatment of Cu2ZnSnSe4 with NaF and KF significantly improved the solar cell efficiency (from 6.4% to 7.8% and 7.7% on average, respectively) due to enhanced fill factor (from 0.58 to 0.61 and 0.62), open-circuit voltage (Voc) (from 314 mV to 337 mV and 325 mV) and short-circuit current density (from 35.3 mA⋅cm −2 to 38.3 mA⋅cm −2 and 38.6 mA⋅cm −2). Voc improvement was higher for solar cells with NaF treatment due to an increase in radiative efficiency at room temperature and shallower defect activation energy as determined by photoluminescence (PL) and temperature dependent admittance spectroscopy, respectively. In the case of KF treatment, red-shift of the PL, higher band tail density of state and donor activation energy deeper in the band gap were limiting further improvement of the Voc compared to NaF treatment. [less ▲]

Detailed reference viewed: 92 (7 UL)
Full Text
Peer Reviewed
See detailVisualizing the performance loss of solar cells by IR thermography — an evaluation study on CIGS with artificially induced defects
Vetter, Andreas; Babbe, Finn UL; Hofbeck, Bernhard et al

in Progress in Photovoltaics (2016), 24(7), 1001-1008

Local electric defects may result in considerable performance losses in solar cells. Infrared (IR) thermography is one im- portant tool to detect these defects on photovoltaic modules. Qualitative ... [more ▼]

Local electric defects may result in considerable performance losses in solar cells. Infrared (IR) thermography is one im- portant tool to detect these defects on photovoltaic modules. Qualitative interpretation of IR images has been carried out successfully, but quantitative interpretation has been hampered by the lack of “calibration” defects. The aims of this study are to (i) establish methods to induce well-defined electric defects in thin-film solar cells serving as “calibration” defects and to (ii) assess the accuracy of IR imaging methods by using these artificially induced defects. This approach paves the way for improving quality control methods based on imaging in photovoltaic. We created ohmic defects (“shunts”) by using a focused ion beam and weak diodes (“interface shunts”) by applying a femto-second laser at rather low power on copper indium gallium selenide cells. The defects can be induced precisely and reproducibly, and the severity of the defects on the electrical performance can be well adjusted by focused ion beam/laser parameters. The successive assess- ment of the IR measurement (ILIT-Voc) revealed that this method can predict the losses in Pmpp (maximal power extract- able) with a mean error of below 10%. [less ▲]

Detailed reference viewed: 30 (0 UL)
Full Text
Peer Reviewed
See detailQuasi Fermi level splitting of Cu-rich and Cu-poor Cu(In,Ga)Se2 absorber layers
Babbe, Finn UL; Choubrac, Léo UL; Siebentritt, Susanne UL

in Applied Physics Letters (2016), 109

Detailed reference viewed: 180 (17 UL)