References of "Auburger, Georg"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailProtective effect of LRRK2 p.R1398H on risk of Parkinson's disease is independent of MAPT and SNCA variants.
Heckman, Michael G.; Elbaz, Alexis; Soto-Ortolaza, Alexandra I. et al

in Neurobiology of aging (2014), 35(1), 2665-14

The best validated susceptibility variants for Parkinson's disease are located in the alpha-synuclein (SNCA) and microtubule-associated protein tau (MAPT) genes. Recently, a protective p.N551K-R1398H ... [more ▼]

The best validated susceptibility variants for Parkinson's disease are located in the alpha-synuclein (SNCA) and microtubule-associated protein tau (MAPT) genes. Recently, a protective p.N551K-R1398H-K1423K haplotype in the leucine-rich repeat kinase 2 (LRRK2) gene was identified, with p.R1398H appearing to be the most likely functional variant. To date, the consistency of the protective effect of LRRK2 p.R1398H across MAPT and SNCA variant genotypes has not been assessed. To address this, we examined 4 SNCA variants (rs181489, rs356219, rs11931074, and rs2583988), the MAPT H1-haplotype-defining variant rs1052553, and LRRK2 p.R1398H (rs7133914) in Caucasian (n = 10,322) and Asian (n = 2289) series. There was no evidence of an interaction of LRRK2 p.R1398H with MAPT or SNCA variants (all p >/= 0.10); the protective effect of p.R1398H was observed at similar magnitude across MAPT and SNCA genotypes, and the risk effects of MAPT and SNCA variants were observed consistently for LRRK2 p.R1398H genotypes. Our results indicate that the association of LRRK2 p.R1398H with Parkinson's disease is independent of SNCA and MAPT variants, and vice versa, in Caucasian and Asian populations. [less ▲]

Detailed reference viewed: 100 (6 UL)
Full Text
Peer Reviewed
See detailLarge-scale replication and heterogeneity in Parkinson disease genetic loci.
Sharma, Manu; Ioannidis, John P. A.; Aasly, Jan O. et al

in Neurology (2012), 79(7), 659-67

OBJECTIVE: Eleven genetic loci have reached genome-wide significance in a recent meta-analysis of genome-wide association studies in Parkinson disease (PD) based on populations of Caucasian descent. The ... [more ▼]

OBJECTIVE: Eleven genetic loci have reached genome-wide significance in a recent meta-analysis of genome-wide association studies in Parkinson disease (PD) based on populations of Caucasian descent. The extent to which these genetic effects are consistent across different populations is unknown. METHODS: Investigators from the Genetic Epidemiology of Parkinson's Disease Consortium were invited to participate in the study. A total of 11 SNPs were genotyped in 8,750 cases and 8,955 controls. Fixed as well as random effects models were used to provide the summary risk estimates for these variants. We evaluated between-study heterogeneity and heterogeneity between populations of different ancestry. RESULTS: In the overall analysis, single nucleotide polymorphisms (SNPs) in 9 loci showed significant associations with protective per-allele odds ratios of 0.78-0.87 (LAMP3, BST1, and MAPT) and susceptibility per-allele odds ratios of 1.14-1.43 (STK39, GAK, SNCA, LRRK2, SYT11, and HIP1R). For 5 of the 9 replicated SNPs there was nominally significant between-site heterogeneity in the effect sizes (I(2) estimates ranged from 39% to 48%). Subgroup analysis by ethnicity showed significantly stronger effects for the BST1 (rs11724635) in Asian vs Caucasian populations and similar effects for SNCA, LRRK2, LAMP3, HIP1R, and STK39 in Asian and Caucasian populations, while MAPT rs2942168 and SYT11 rs34372695 were monomorphic in the Asian population, highlighting the role of population-specific heterogeneity in PD. CONCLUSION: Our study allows insight to understand the distribution of newly identified genetic factors contributing to PD and shows that large-scale evaluation in diverse populations is important to understand the role of population-specific heterogeneity. [less ▲]

Detailed reference viewed: 74 (0 UL)
Full Text
Peer Reviewed
See detailA multi-centre clinico-genetic analysis of the VPS35 gene in Parkinson disease indicates reduced penetrance for disease-associated variants.
Sharma, Manu; Ioannidis, John P. A.; Aasly, Jan O. et al

in Journal of medical genetics (2012), 49(11), 721-6

BACKGROUND: Two recent studies identified a mutation (p.Asp620Asn) in the vacuolar protein sorting 35 gene as a cause for an autosomal dominant form of Parkinson disease . Although additional missense ... [more ▼]

BACKGROUND: Two recent studies identified a mutation (p.Asp620Asn) in the vacuolar protein sorting 35 gene as a cause for an autosomal dominant form of Parkinson disease . Although additional missense variants were described, their pathogenic role yet remains inconclusive. METHODS AND RESULTS: We performed the largest multi-center study to ascertain the frequency and pathogenicity of the reported vacuolar protein sorting 35 gene variants in more than 15,000 individuals worldwide. p.Asp620Asn was detected in 5 familial and 2 sporadic PD cases and not in healthy controls, p.Leu774Met in 6 cases and 1 control, p.Gly51Ser in 3 cases and 2 controls. Overall analyses did not reveal any significant increased risk for p.Leu774Met and p.Gly51Ser in our cohort. CONCLUSIONS: Our study apart from identifying the p.Asp620Asn variant in familial cases also identified it in idiopathic Parkinson disease cases, and thus provides genetic evidence for a role of p.Asp620Asn in Parkinson disease in different populations worldwide. [less ▲]

Detailed reference viewed: 66 (0 UL)
Full Text
Peer Reviewed
See detailThe modulation of Amyotrophic Lateral Sclerosis risk by ataxin-2 intermediate polyglutamine expansions is a specific effect.
Gispert, Suzana; Kurz, Alexander; Waibel, Stefan et al

in Neurobiology of disease (2012), 45(1), 356-61

Full expansions of the polyglutamine domain (polyQ>/=34) within the polysome-associated protein ataxin-2 (ATXN2) are the cause of a multi-system neurodegenerative disorder, which usually presents as a ... [more ▼]

Full expansions of the polyglutamine domain (polyQ>/=34) within the polysome-associated protein ataxin-2 (ATXN2) are the cause of a multi-system neurodegenerative disorder, which usually presents as a Spino-Cerebellar Ataxia and is therefore known as SCA2, but may rarely manifest as Levodopa-responsive Parkinson syndrome or as motor neuron disease. Intermediate expansions (27</=polyQ</=33) were reported to modify the risk of Amyotrophic Lateral Sclerosis (ALS). We have now tested the reproducibility and the specificity of this observation. In 559 independent ALS patients from Central Europe, the association of ATXN2 expansions (30</=polyQ</=35) with ALS was highly significant. The study of 1490 patients with Parkinson's disease (PD) showed an enrichment of ATXN2 alleles 27/28 in a subgroup with familial cases, but the overall risk of sporadic PD was unchanged. No association was found between polyQ expansions in Ataxin-3 (ATXN3) and ALS risk. These data indicate a specific interaction between ATXN2 expansions and the causes of ALS, possibly through altered RNA-processing as a common pathogenic factor. [less ▲]

Detailed reference viewed: 93 (1 UL)
Full Text
Peer Reviewed
See detailMitochondrial translation initiation factor 3 gene polymorphism associated with Parkinson's disease.
Abahuni, Nadine; Gispert, Suzana; Bauer, Peter et al

in Neuroscience letters (2007), 414(2), 126-9

Mitochondrial dysfunction occurs early in late-onset sporadic Parkinson's disease (PD), but the mitochondrial protein network mediating PD pathogenesis is largely unknown. Mutations in the mitochondrial ... [more ▼]

Mitochondrial dysfunction occurs early in late-onset sporadic Parkinson's disease (PD), but the mitochondrial protein network mediating PD pathogenesis is largely unknown. Mutations in the mitochondrial serine-threonine kinase PINK1 have recently been shown to cause the early-onset autosomal recessive PARK6 variant of PD. We have now tested a candidate interactor protein of PINK1, the mitochondrial translation initiation factor 3 (MTIF3) for involvement in PD pathogenesis. In two independent case-control collectives, the c.798C>T polymorphism of the MTIF3 gene showed allelic association with PD, with a maximal significance of p=0.0073. An altered function of variant MTIF3 may affect the availability of mitochondrial encoded proteins, lead to oxidative stress and create vulnerability for PD. [less ▲]

Detailed reference viewed: 85 (1 UL)
Peer Reviewed
See detailLoss-of-function of human PINK1 results in mitochondrial pathology and can be rescued by parkin.
Exner, Nicole; Treske, Bettina; Paquet, Dominik et al

in The Journal of neuroscience : the official journal of the Society for Neuroscience (2007), 27(45), 12413-8

Degeneration of dopaminergic neurons in the substantia nigra is characteristic for Parkinson's disease (PD), the second most common neurodegenerative disorder. Mitochondrial dysfunction is believed to ... [more ▼]

Degeneration of dopaminergic neurons in the substantia nigra is characteristic for Parkinson's disease (PD), the second most common neurodegenerative disorder. Mitochondrial dysfunction is believed to contribute to the etiology of PD. Although most cases are sporadic, recent evidence points to a number of genes involved in familial variants of PD. Among them, a loss-of-function of phosphatase and tensin homolog-induced kinase 1 (PINK1; PARK6) is associated with rare cases of autosomal recessive parkinsonism. In HeLa cells, RNA interference-mediated downregulation of PINK1 results in abnormal mitochondrial morphology and altered membrane potential. Morphological changes of mitochondria can be rescued by expression of wild-type PINK1 but not by PD-associated PINK1 mutants. Moreover, primary cells derived from patients with two different PINK1 mutants showed a similar defect in mitochondrial morphology. Human parkin but not PD-associated mutants could rescue mitochondrial pathology in human cells like wild-type PINK1. Our results may therefore suggest that PINK1 deficiency in humans results in mitochondrial abnormalities associated with cellular stress, a pathological phenotype, which can be ameliorated by enhanced expression of parkin. [less ▲]

Detailed reference viewed: 89 (0 UL)