References of "Atkinson, J"
     in
Bookmark and Share    
Peer Reviewed
See detailOxidative stress activates MMP-2 in cultured human coronary smooth muscle cells
Valentin, F.; Bueb, Jean-Luc UL; Kieffer, P. et al

in Fundamental & Clinical Pharmacology (2005), 19(6), 661-7

Oxidative stress is a cardinal feature of the inflammatory process and is involved in various pathologies including atherosclerosis. One of the important mechanisms in which oxidative stress may play a ... [more ▼]

Oxidative stress is a cardinal feature of the inflammatory process and is involved in various pathologies including atherosclerosis. One of the important mechanisms in which oxidative stress may play a role is activation of matrix metalloproteinases such as MMP-2, which are involved in plaque destabilization. We investigated the mechanisms by which oxidative stress induces MMP-2 activation in cultured human coronary artery smooth muscle cells. Using zymography and Western blot analysis, we showed that oxidized low-density lipoproteins activate MMP-2 through up-regulation of the expression and activation of a membrane-type 1 matrix metalloproteinase (MT1-MMP). A second mechanism of MMP-2 activation involves oxidative radicals generated by the xanthine/xanthine oxidase complex (X/Xo). Research on these two mechanisms of MMP activation could lead to the elaboration of new vascular therapies for the treatment of atheroma based on interruption of a specific oxidative stress pathway. [less ▲]

Detailed reference viewed: 65 (0 UL)
Peer Reviewed
See detailPertussis toxin-sensitive G(i)-proteins and intracellular calcium sensitivity of vasoconstriction in the intact rat tail artery
Spitzbarth-Régrigny, E.; Petitcolin, M. A.; Bueb, Jean-Luc UL et al

in British Journal of Pharmacology (2000), 131(7), 1337-44

1. We studied the involvement of pertussis toxin (PTX)-sensitive G-proteins in the sensitivity of arterial constriction to intracellular calcium ([Ca(2+)](i)) mobilization. 2. Vasoconstriction was ... [more ▼]

1. We studied the involvement of pertussis toxin (PTX)-sensitive G-proteins in the sensitivity of arterial constriction to intracellular calcium ([Ca(2+)](i)) mobilization. 2. Vasoconstriction was measured in vitro in perfused, de-endothelialized rat tail arteries loaded with the calcium-sensitive dye, fura-2 and treated or not with PTX (30 - 1000 ng ml(-1)). Arteries were stimulated with noradrenaline (NA, 0.1 - 100 microM) or KCl (15 - 120 mM). 3. KCl elicited a smaller vasoconstrictor response (E(max)=94+/-8 mmHg) than NA (E(max)=198+/-9 mmHg) although [Ca(2+)](i) mobilization was similar (E(max)=123+/-8 and 135+/-7 nM for KCl and NA, respectively). PTX (1000 ng ml(-1)) had no effect on [Ca(2+)](i) mobilization but lowered NA- (but not KCl-) induced vasoconstriction (E(max)=118+/-7 mmHg). 4. G(i/o)-proteins were revealed by immunoblotting with anti-G(i alpha) and anti-G(o alpha) antibodies in membranes prepared from de-endothelialized tail arteries. [alpha(32)P]-ADP-ribosylation of G-proteins by PTX (1000 ng ml(-1)) was demonstrated in the intact rat tail artery (pixels in the absence of PTX: 3150, presence: 25053). 5. In conclusion, we suggest that smooth muscle cells possess a PTX-sensitive G(i)-protein-mediated intracellular pathway which amplifies [Ca(2+)](i) sensitivity of contraction in the presence of agonists such as NA. [less ▲]

Detailed reference viewed: 89 (0 UL)