References of "Antoine, Xavier"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailHigh Frequency Acoustic Scattering in Isogeometric Analysis
Khajah, Tahsin; Antoine, Xavier; Bordas, Stéphane UL

Scientific Conference (2017, May 15)

There is an emerging need to perform high frequency scattering analysis on high-fidelity models. Conventional Finite Element analysis suffers from irretrievable loss of the boundary accuracy as well as ... [more ▼]

There is an emerging need to perform high frequency scattering analysis on high-fidelity models. Conventional Finite Element analysis suffers from irretrievable loss of the boundary accuracy as well as pollution error. Man-made geometries can be represented exactly in Isogeometric Analysis (IGA) with no geometrical loss even with very coarse mesh. The aim of this paper is to analyze the accuracy of IGA for exterior acoustic scattering problems. The numerical results show extremely low pollution error even for very high frequencies. [less ▲]

Detailed reference viewed: 277 (7 UL)
Full Text
See detailIsogeometric finite element analysis of time-harmonic exterior acoustic scattering problems
Khajah, Tahsin; Antoine, Xavier; Bordas, Stéphane UL

E-print/Working paper (2016)

We present an isogeometric analysis of time-harmonic exterior acoustic problems. The infinite space is truncated by a fictitious boundary and (simple) absorbing boundary conditions are applied. The ... [more ▼]

We present an isogeometric analysis of time-harmonic exterior acoustic problems. The infinite space is truncated by a fictitious boundary and (simple) absorbing boundary conditions are applied. The truncation error is included in the exact solution so that the reported error is an indicator of the performance of the isogeometric analysis, in particular of the related pollution error. Numerical results performed with high-order basis functions (third or fourth orders) showed no visible pollution error even for very high frequencies. This property combined with exact geometrical representation makes isogeometric analysis a very promising platform to solve high-frequency acoustic problems. [less ▲]

Detailed reference viewed: 118 (14 UL)