References of "Annaiyan, Arun 50000421"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailReal-time graph-based SLAM in unknown environments using a small UAV
Annaiyan, Arun UL; Olivares Mendez, Miguel Angel UL; Voos, Holger UL

in 2017 International Conference on Unmanned Aircraft Systems (ICUAS); Miami 13-16 June 2017 (2017)

Autonomous navigation of small Unmanned Aerial Vehicles (UAVs) in cluttered environments is still a challenging problem. In this work, we present an approach based on graph slam and loop closure detection ... [more ▼]

Autonomous navigation of small Unmanned Aerial Vehicles (UAVs) in cluttered environments is still a challenging problem. In this work, we present an approach based on graph slam and loop closure detection for online mapping of unknown outdoor environments using a small UAV. Here, we used an onboard front facing stereo camera as the primary sensor. The data extracted by the cameras are used by the graph-based slam algorithm to estimate the position and create the graph-nodes and construct the map. To avoid multiple detections of one object as different objects and to identify re-visited locations, a loop closure detection is applied with optimization algorithm using the g2o toolbox to minimize the error. Furthermore, 3D occupancy map is used to represent the environment. This technique is used to save memory and computational time for the online processing. Real experiments are conducted in outdoor cluttered and open field environments.The experiment results show that our presented approach works under real time constraints, with an average time to process the nodes of the 3D map is 17.79ms. [less ▲]

Detailed reference viewed: 161 (14 UL)
Full Text
Peer Reviewed
See detailTowards an Autonomous Vision-Based Unmanned Aerial System against Wildlife Poachers
Olivares Mendez, Miguel Angel UL; Fu, Changhong; Ludivig, Philippe et al

in Sensors (2015), 15(12), 29861

Poaching is an illegal activity that remains out of control in many countries. Based on the 2014 report of the United Nations and Interpol, the illegal trade of global wildlife and natural resources ... [more ▼]

Poaching is an illegal activity that remains out of control in many countries. Based on the 2014 report of the United Nations and Interpol, the illegal trade of global wildlife and natural resources amounts to nearly $213 billion every year, which is even helping to fund armed conflicts. Poaching activities around the world are further pushing many animal species on the brink of extinction. Unfortunately, the traditional methods to fight against poachers are not enough, hence the new demands for more efficient approaches. In this context, the use of new technologies on sensors and algorithms, as well as aerial platforms is crucial to face the high increase of poaching activities in the last few years. Our work is focused on the use of vision sensors on UAVs for the detection and tracking of animals and poachers, as well as the use of such sensors to control quadrotors during autonomous vehicle following and autonomous landing. [less ▲]

Detailed reference viewed: 193 (45 UL)
Full Text
Peer Reviewed
See detailVisual odometry based absolute target geo-location from micro aerial vehicle
Annaiyan, Arun UL; Yadav, Mahadeeswara; Olivares Mendez, Miguel Angel UL et al

in International Conference on Robotics, Automation, Control and Embedded Systems (RACE), 2015 (2015, February 20)

An unmanned aerial system capable of finding world coordinates of a ground target is proposed here. The main focus here was to provide effective methodology to estimate ground target world coordinates ... [more ▼]

An unmanned aerial system capable of finding world coordinates of a ground target is proposed here. The main focus here was to provide effective methodology to estimate ground target world coordinates using aerial images captured by the custom made micro aerial vehicle (MAV) as a part of visual odometery process on real time. The method proposed here for finding target's ground coordinates uses a monocular camera which is placed in MAV belly in forward looking/ Downward looking mode. The Binary Robust Invariant Scalable Key points (BRISK) algorithm was implemented for detecting feature points in the consecutive images. After robust feature point detection, efficiently performing Image Registration between the aerial images captured by MAV and with the Geo referenced images is the prime and core computing operation considered. Precise Image alignment is implemented by accurately estimating Homography matrix. In order to accurately estimate Homography matrix which consists of 9 parameters, this algorithm solves the problem in a Least Square Optimization way. Therefore, this framework can be integrated with visual odometery pipeline; this gives the advantage of reducing the computational burden on the hardware. The system can still perform the task of target geo-localization efficiently based on visual features and geo referenced reference images of the scene which makes this solution to be found as cost effective, easily implementable with robustness in the output. The hardware implementation of MAV along with this dedicated system which can do the proposed work to find the target coordinates is completed. The main application of this work is in search and rescue operations in real time scenario. The methodology was analyzed and executed in MATLAB before implementing real time on the developed platform. Finally, three case studies with different advantages derived from the proposed framework are represented. [less ▲]

Detailed reference viewed: 134 (18 UL)