References of "Adamski, Jerzy"
     in
Bookmark and Share    
Peer Reviewed
See detailProgressive loss of PAX9 expression correlates with increasing malignancy of dysplastic and cancerous epithelium of the human oesophagus.
Gerber, Josef-Karl; Richter, Thomas; Kremmer, Elisabeth et al

in Journal of Pathology (The) (2002), 197(3), 293-7

Pax genes encode a family of transcription factors that play key roles in embryonic development. Whereas the functions of Pax genes in the adult organism are largely unknown, upregulated Pax gene ... [more ▼]

Pax genes encode a family of transcription factors that play key roles in embryonic development. Whereas the functions of Pax genes in the adult organism are largely unknown, upregulated Pax gene expression has been implicated in tumourigenesis. In this study, PAX9-specific monoclonal antibodies have been generated and it has been shown that PAX9 protein is expressed in the normal epithelium of the adult human oesophagus. PAX9 expression was either lost or significantly reduced in the majority of invasive carcinomas and epithelial dysplasias, the latter representing precancerous lesions. Notably, the percentage of PAX9-positive cells within the epithelium decreased with increasing malignancy of the epithelial lesion. These results identify PAX9 as a sensitive marker for deregulated differentiation of oesophageal keratinocytes and indicate a role for PAX9 in the normal differentiation process of internal stratified squamous epithelia. These data suggest that upregulated PAX9 expression is not required for the formation of the majority of squamous cell carcinomas of the human oesophagus. [less ▲]

Detailed reference viewed: 61 (0 UL)
Peer Reviewed
See detailDeletion of deoxyribonucleic acid binding domain of the vitamin D receptor abrogates genomic and nongenomic functions of vitamin D.
Erben, Reinhold G.; Soegiarto, Desi W.; Weber, Karin et al

in Molecular endocrinology (Baltimore, Md.) (2002), 16(7), 1524-37

The vitamin D hormone 1,25-dihydroxyvitamin D(3) [1,25-(OH)(2)D(3)], the biologically active form of vitamin D, is essential for an intact mineral metabolism. Using gene targeting, we sought to generate ... [more ▼]

The vitamin D hormone 1,25-dihydroxyvitamin D(3) [1,25-(OH)(2)D(3)], the biologically active form of vitamin D, is essential for an intact mineral metabolism. Using gene targeting, we sought to generate vitamin D receptor (VDR) null mutant mice carrying the reporter gene lacZ driven by the endogenous VDR promoter. Here we show that our gene-targeted mutant mice express a VDR with an intact hormone binding domain, but lacking the first zinc finger necessary for DNA binding. Expression of the lacZ reporter gene was widely distributed during embryogenesis and postnatally. Strong lacZ expression was found in bones, cartilage, intestine, kidney, skin, brain, heart, and parathyroid glands. Homozygous mice are a phenocopy of mice totally lacking the VDR protein and showed growth retardation, rickets, secondary hyperparathyroidism, and alopecia. Feeding of a diet high in calcium, phosphorus, and lactose normalized blood calcium and serum PTH levels, but revealed a profound renal calcium leak in normocalcemic homozygous mutants. When mice were treated with pharmacological doses of vitamin D metabolites, responses in skin, bone, intestine, parathyroid glands, and kidney were absent in homozygous mice, indicating that the mutant receptor is nonfunctioning and that vitamin D signaling pathways other than those mediated through the classical nuclear receptor are of minor physiological importance. Furthermore, rapid, nongenomic responses to 1,25-(OH)(2)D(3) in osteoblasts were abrogated in homozygous mice, supporting the conclusion that the classical VDR mediates the nongenomic actions of 1,25-(OH)(2)D(3). [less ▲]

Detailed reference viewed: 65 (0 UL)