References of "Peters, Bernhard 50002840"
     in
Bookmark and Share    
Full Text
See detailBerechnung des Transportes von Treibgut bei Hochwasser
Peters, Bernhard UL; Pozzetti, Gabriele UL; Liao, Yu-Chung UL

in 39. DRESDNER WASSERBAUKOLLOQUIUM (2016)

Hochwasser hervorgerufen durch natürliche Ursachen wie Schneeschmelze oder durch bauliche Maßnahmen wie Flussbegradigung verursacht häufig eine Flutkatastrophe mit verheerenden Überschwemmungen. Zu den ... [more ▼]

Hochwasser hervorgerufen durch natürliche Ursachen wie Schneeschmelze oder durch bauliche Maßnahmen wie Flussbegradigung verursacht häufig eine Flutkatastrophe mit verheerenden Überschwemmungen. Zu den schon katastrophalen Folgen von Hochwasser addieren sich häufig noch die Schäden von gefährliche Treibgut, das mit den Fluten mitgerissen wird und unter Umständen über weite Strecken transportiert wird. Mitgerissenes Treibgut kann zur Verklausung von Brücken führen oder auch Bauwerke zerstören. Um die Folgen eines Hochwassers einschließlich Transport von Treibgut abschätzen zu können, sind numerische Werkzeuge eine adäquate Ergänzung zu experimentellen Methoden, die oft mit einem sehr hohen Aufwand verbunden sind. Deshalb wird im vorliegenden Beitrag eine neue und innovative numerischer Ansatz vorgestellt, der den Transport von Treibgut bei Hochwasser aber auch bei Normalwasser beschreibt. Dazu werden die beiden numerischen Methoden beruhend auf einem diskreten und kontinuierlichem Ansatz gekoppelt. Letzterer beinhaltet die Euler Methoden, mit denen die Strömung des Wassers im Rahmen von bewährten Rechenmethoden der Computational Fluid Dynamik (CFD) bestimmt wird. Treibgut wird diskret betrachtet, in dem es mit der Diskreten Element Methode (DEM) beschreiben wird. Damit kann sowohl jedes einzelne Element des Treibgutes berücksichtigt werden als auch seine Eigenschaften wie Größe, Form und Gewicht. Innerhalb dieses Ansatzes können die Kontaktkräfte zwischen den einzelnen Elementen des Treibgutes berechnet werden, mit denen sich Geschwindigkeit, Position und Orientierung des Treibgutes bestimmen lassen. Zusätzlich wird über eine Kopplung zur fluiden Phase der Einfluss sowohl der Wassergeschwindigkeit als des Auftriebs mit berücksichtigt. [less ▲]

Detailed reference viewed: 136 (21 UL)
Full Text
Peer Reviewed
See detailModeling of the biomass combustion on a forward acting grate using XDEM
Mahmoudi, Amir Houshang UL; Besseron, Xavier UL; Hoffmann, F. et al

in Chemical Engineering Science (2016), 142

The grate firing system is one of the most common ways for the combustion of biomass because it is able to burn a broad range of fuels with only little or even no requirement for fuel preparation. In ... [more ▼]

The grate firing system is one of the most common ways for the combustion of biomass because it is able to burn a broad range of fuels with only little or even no requirement for fuel preparation. In order to improve the fuel combustion efficiency, it is important to understand the details of the thermochemical process in such furnaces. However, the process is very complex due to many involved physical and chemical phenomena such as drying, pyrolysis, char combustion, gas phase reaction, two phase flow and many more. The main objective of this work is to study precisely the involved processes in biomass combustion on a forward acting grate and provide a detailed insight into the local and global conversion phenomena. For this purpose, XDEM as an Euler-Lagrange model is used, in which the fluid phase is a continuous phase and each particle is tracked with a Lagrangian approach. The model has been compared with experimental data. Very good agreements between simulation and measurement have been achieved, proving the ability of the model to predict the biomass combustion under study on the grate. © 2015 Elsevier Ltd. [less ▲]

Detailed reference viewed: 32 (2 UL)
Full Text
Peer Reviewed
See detailNumerical study of the influence of particle size and packing on pyrolysis products using XDEM
Mahmoudi, Amir Houshang UL; Hoffmann, F.; Peters, Bernhard UL et al

in International Communications in Heat & Mass Transfer (2016), 71

Conversion of biomass as a renewable source of energy is one of the most challenging topics in industry and academy. Numerical models may help designers to understand better the details of the involved ... [more ▼]

Conversion of biomass as a renewable source of energy is one of the most challenging topics in industry and academy. Numerical models may help designers to understand better the details of the involved processes within the reactor, to improve process control and to increase the efficiency of the boilers. In this work, XDEM as an Euler-Lagrange model is used to predict the heat-up, drying and pyrolysis of biomass in a packed bed of spherical biomass particles. The fluid flow through the void space of a packed bed (which is formed by solid particles) is modeled as three-dimensional flow through a porous media using a continuous approach. The solid phase forming the packed bed is represented by individual, discrete particles which are described by a Lagrangian approach. On the particle level, distributions of temperature and species within a single particle are accounted for by a system of one-dimensional and transient conservation equations. The model is compared to four sets of experimental data from independent research groups. Good agreements with all experimental data are achieved, proving reliability of the used numerical methodology. The proposed model is used to investigate the impact of particle size in combination with particle packing on the char production. For this purpose, three setups of packed beds differing in particle size and packing mode are studied under the same process conditions. The predicted results show that arranging the packed bed in layers of small and large particles may increase the final average char yield for the entire bed by 46 %. © 2015 Elsevier B.V. [less ▲]

Detailed reference viewed: 28 (3 UL)
Full Text
Peer Reviewed
See detailXDEM for Tuning Lumped Models of Thermochemical Processes Involving Materials in the Powder State
Copertaro, Edoardo UL; Chiariotti, Paolo; Estupinan Donoso, Alvaro Antonio UL et al

in Engineering Journal (2016), 20(5), 187-201

Processes involving materials in gaseous and powder states cannot be modelled without coupling interactions between the two states. XDEM (Extended Discrete Element Method) is a valid tool for tackling ... [more ▼]

Processes involving materials in gaseous and powder states cannot be modelled without coupling interactions between the two states. XDEM (Extended Discrete Element Method) is a valid tool for tackling this issue, since it allows a coupled CFD- DEM simulation to be run. Such strength, however, mainly finds in long computational times its main drawback. This aspect is indeed critical in several applications, since a long computational time is in contrast with the increasing demand for predictive tools that can provide fast and accurate results in order to be used in new monitoring and control strategies. This paper focuses on the use of the XDEM framework as a tool for fine tuning a lumped representation of the non-isothermal decarbonation of a CaCO3 sample in powder state. The tuning of the lumped model is performed exploiting the multi-objective optimization capability of genetic algorithms. Results demonstrate that such approach makes it possible to estimate fast and accurate models to be used, for instance, in the fields of virtual sensing and predictive control. [less ▲]

Detailed reference viewed: 44 (3 UL)
Full Text
Peer Reviewed
See detailA discrete-continuous approach to describe CaCO3 decarbonation in non-steady thermal conditions
Estupinan Donoso, Alvaro Antonio UL; Peters, Bernhard UL; Copertaro, Edoardo et al

in Powder Technology (2015), 275

In cement production, direct measurements of thermal and chemical variables are often unfeasible as a consequence of aggressive environments, moving parts and physical inaccessibility, and therefore ... [more ▼]

In cement production, direct measurements of thermal and chemical variables are often unfeasible as a consequence of aggressive environments, moving parts and physical inaccessibility, and therefore prediction models are essential tools in these types of industrial applications. This article addresses the problem of the numerical prediction of the CaCO3 calcination process, which is the first and the most energy expensive process in clinker production. This study was conducted using the Extended Discrete Element Method (XDEM), a framework which allows a Eulerian approach for the gas phase to be combined with a Lagrange one for the powder phase. A detailed validation of the numerical model was performed by comparison to non-isothermal TG curves for mass loss during the CaCO3 decarbonation process. The complex three-dimensional predictions for solid and gas phases are believed to represent a first step towards a new insight into the cement production process. Thus, the high accuracy and detailed description of the problem addressed, serve as a basis to assess the uncertainty of more simplified models such as those used in soft sensors. [less ▲]

Detailed reference viewed: 118 (16 UL)
Full Text
Peer Reviewed
See detailXDEM Used for Predicting Tungsten-Oxide Reduction
Estupinan Donoso, Alvaro Antonio UL; Peters, Bernhard UL

Scientific Conference (2015, April 27)

Detailed reference viewed: 120 (10 UL)
Full Text
Peer Reviewed
See detailPerformance Evaluation of the XDEM framework on the OpenStack Cloud Computing Middleware
Besseron, Xavier UL; Plugaru, Valentin UL; Mahmoudi, Amir Houshang UL et al

in Proceedings of the Fourth International Conference on Parallel, Distributed, Grid and Cloud Computing for Engineering (2015, February)

As Cloud Computing services become ever more prominent, it appears necessary to assess the efficiency of these solutions. This paper presents a performance evaluation of the OpenStack Cloud Computing ... [more ▼]

As Cloud Computing services become ever more prominent, it appears necessary to assess the efficiency of these solutions. This paper presents a performance evaluation of the OpenStack Cloud Computing middleware using our XDEM application simulating the pyrolysis of biomass as a benchmark. We propose a systematic study based on a fully automated benchmarking framework to evaluate 3 different configurations: Native (i.e. no virtualization), OpenStack with KVM and XEN hypervisors. Our approach features the following advantages: real user application, the fair comparison using the same hardware, the large scale distributed execution, while fully automated and reproducible. Experiments has been run on two different clusters, using up to 432 cores. Results show a moderate overhead for sequential execution and a significant penalty for distributed execution under the Cloud middleware. The overhead on multiple nodes is between 10% and 30% for OpenStack/KVM and 30% and 60% for OpenStack/XEN. [less ▲]

Detailed reference viewed: 313 (50 UL)
Full Text
Peer Reviewed
See detailMultiskalenmodellierung für technische Anwendungen
Peters, Bernhard UL

in ECEMP 2015, European Centre for Emerging Materials and Processes (2015)

Detailed reference viewed: 14 (0 UL)
Full Text
Peer Reviewed
See detailA Combined Experimental and Numerical Approach to a Discrete Description of Indirect Reduction of Iron Oxide
Peters, Bernhard UL; Hoffmann, F.; Senk, D. et al

in SteelSim 2015, MODELLING and SIMULATION of METALLURGICAL PROCESSES in STEELMAKING (2015)

Detailed reference viewed: 12 (0 UL)
Full Text
Peer Reviewed
See detailA Discrete Approach to Describe the Elastic-plastic Behaviour of Snow
Peters, Bernhard UL; Michael, M.; Nicot, F.

in Fourth Conference on Particle-Based Methods (PARTICLES 2015) (2015)

Detailed reference viewed: 26 (4 UL)
Full Text
Peer Reviewed
See detailThe Extended Discrete Element Method (XDEM) as a Flexible and Advanced Tool in Multi-physics Applications
Peters, Bernhard UL

in 26th International Symposium on Transport Phenomena (2015)

Detailed reference viewed: 19 (0 UL)
Full Text
Peer Reviewed
See detailExperimental and numerical investigation into iron ore reduction in packed beds
Peters, Bernhard UL; Hoffmann, F.; Senk, D. et al

in Chemical Engineering Science (2015)

Detailed reference viewed: 19 (0 UL)
Full Text
Peer Reviewed
See detailA discrete/continuous numerical approach to multi-physics
Peters, Bernhard UL; Besseron, Xavier UL; Estupinan Donoso, Alvaro Antonio UL et al

in IFAC-PapersOnLine (2015), 28(1), 645-650

A variety of technical applications are not only the physics of a single domain, but include several physical phenomena, and therefore are referred to as multi-physics. As long as the phenomena being ... [more ▼]

A variety of technical applications are not only the physics of a single domain, but include several physical phenomena, and therefore are referred to as multi-physics. As long as the phenomena being taken into account is either continuous or discrete i.e. Euler or Lagrangian a homogeneous solution concept can be employed. However, numerous challenges in engineering include continuous and discrete phase simultaneously, and therefore cannot be solved only by continuous or discrete approaches. Problems include both a continuous and a discrete phase are important in applications of the pharmaceutical Industry e.g. drug production, agriculture and food processing industry, mining, construction and Agricultural machinery, metal production, power generation and systems biology. The Extended Discrete Element Method (XDEM) is a novel technique, which provides a significant advance for the coupled discrete and continuous numerical simulation concepts. It expands the dynamics of particles as described by the classical discrete element method (DEM) by a thermodynamic state or stress/strain coupled as fluid flow or structures for each particle in a continuum phase. XDEM additionally estimates properties such as the interior temperature and/or species distribution. These predictive capabilities are extended to fluid flow through an interaction by heat, mass and momentum transfer important for process engineering. © 2015, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved. [less ▲]

Detailed reference viewed: 43 (3 UL)
Full Text
Peer Reviewed
See detailAssessing Heat Transfer Through Walls Of Packed Bed Reactors By An Innovative Particle-Resolved Approach
Peters, Bernhard UL; Singhal, A.; Besseron, Xavier UL et al

in 18th IFRF Member's Conference (2015)

Detailed reference viewed: 26 (0 UL)
Full Text
Peer Reviewed
See detailA discrete-continuous approach to describe CaCO3 decarbonation in non-steady thermal conditions
Copertaro, Edoardo UL; Chiariotti, Paolo; Estupinan Donoso, Alvaro Antonio et al

in Powder Technology (2015), 275

In cement production, direct measurements of thermal and chemical variables are often unfeasible as a consequence of aggressive environments, moving parts and physical inaccessibility, and therefore ... [more ▼]

In cement production, direct measurements of thermal and chemical variables are often unfeasible as a consequence of aggressive environments, moving parts and physical inaccessibility, and therefore prediction models are essential tools in these types of industrial applications. This article addresses the problem of the numerical prediction of the CaCO3 calcination process, which is the first and the most energy expensive process in clinker production. This study was conducted using the Extended Discrete Element Method (XDEM), a framework which allows a Eulerian approach for the gas phase to be combined with a Lagrange one for the powder phase. A detailed validation of the numerical model was performed by comparison to non-isothermal TG curves for mass loss during the CaCO3 decarbonation process. The complex three-dimensional predictions for solid and gas phases are believed to represent a first step towards a new insight into the cement production process. Thus, the high accuracy and detailed description of the problem addressed, serve as a basis to assess the uncertainty of more simplified models such as those used in soft sensors. [less ▲]

Detailed reference viewed: 44 (4 UL)
Full Text
See detailROS homeostasis in a dynamic model: How to save PD neuron?
Kolodkin, Alexey UL; Ignatenko, Andrew UL; Sangar, Vineet et al

Poster (2014, December)

Detailed reference viewed: 127 (14 UL)
Full Text
See detailDecentralized Power Supply for Small and Medium User Facilities
Hadji-Minaglou, Jean-Régis UL; Hoben, Ralf UL; Peters, Bernhard UL

Patent (2014)

The world-wide energy consumption has almost doubled since 1980 despite efforts towards energy saving and efficiency. This trend is supposed to continue for the decades to come so that major energy crises ... [more ▼]

The world-wide energy consumption has almost doubled since 1980 despite efforts towards energy saving and efficiency. This trend is supposed to continue for the decades to come so that major energy crises with electricity cuts and shortage of petrol or gas are anticipated. Furthermore, an ever increasing consumption of fossil fuels significantly contributes to further emissions of greenhouse gases and consequently to global warming in conjunction with catastrophic climate changes. These impacts are reduced to a large extent through utilisation of renewable energy sources for and within decentralised user facilities. The present invention relates to a method of communicating operation modes between a user facility control unit at a user facility and a utility grid control unit of a utility grid. In particular, it relates to a decentralised method of communicating operation modes between a user facility control unit at a user facility with renewable energy supply and a utility grid control unit of a utility grid. [less ▲]

Detailed reference viewed: 39 (0 UL)
See detailDynamic modelling of ROS management and ROS-induced mitophagy
Kolodkin, Alexey UL; Ignatenko, Andrew UL; Sangar, Vineet et al

Poster (2014, June)

Detailed reference viewed: 123 (16 UL)