References of "Peters, Bernhard 50002840"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailA parallel dual-grid multiscale approach to CFD-DEM couplings
Pozzetti, Gabriele UL; Jasak, Hrvoje; Besseron, Xavier UL et al

E-print/Working paper (2018)

In this work, a new parallel dual-grid multiscale approach for CFD-DEM couplings is investigated. Dual- grid multiscale CFD-DEM couplings have been recently developed and successfully adopted in different ... [more ▼]

In this work, a new parallel dual-grid multiscale approach for CFD-DEM couplings is investigated. Dual- grid multiscale CFD-DEM couplings have been recently developed and successfully adopted in different applications still, an efficient parallelization for such a numerical method represents an open issue. Despite its ability to provide grid convergent solutions and more accurate results than standard CFD-DEM couplings, this young numerical method requires good parallel performances in order to be applied to large-scale problems and, therefore, extend its range of application. The parallelization strategy here proposed aims to take advantage of the enhanced complexity of a dual-grid coupling to gain more flexibility in the domain partitioning while keeping a low inter-process communication cost. In particular, it allows avoiding inter- process communication between CFD and DEM software and still allows adopting complex partitioning strategies thanks to an optimized grid-based communication. It is shown how the parallelized multiscale coupling holds all its natural advantages over a mono-scale coupling and can also have better parallel performance. Three benchmark cases are presented to assess the accuracy and performance of the strategy. It is shown how the proposed method allows maintaining good parallel performance when operated over 1000 processes. [less ▲]

Detailed reference viewed: 29 (7 UL)
Full Text
Peer Reviewed
See detailA Parallel Multiscale DEM-VOF Method For Large-Scale Simulations Of Three-Phase Flows
Pozzetti, Gabriele UL; Besseron, Xavier UL; Rousset, Alban UL et al

in Proceedings of ECCM-ECFD 2018 (2018)

A parallel dual-grid multiscale DEM-VOF coupling is here investigated. Dual- grid multiscale couplings have been recently used to address different engineering problems involving the interaction between ... [more ▼]

A parallel dual-grid multiscale DEM-VOF coupling is here investigated. Dual- grid multiscale couplings have been recently used to address different engineering problems involving the interaction between granular phases and complex fluid flows. Nevertheless, previous studies did not focus on the parallel performance of such a coupling and were, therefore, limited to relatively small applications. In this contribution, we propose an insight into the performance of the dual-grid multiscale DEM-VOF method for three- phase flows when operated in parallel. In particular,we focus on a famous benchmark case for three-phase flows and assess the influence of the partitioning algorithm on the scalability of the dual-grid algorithm. [less ▲]

Detailed reference viewed: 52 (18 UL)
Full Text
Peer Reviewed
See detailComparison of Several RANS Modelling for the Pavia TRIGA Mark II Research Reactor
Introini, Carolina; Cammi, Antonio; Lorenzi, Stefano et al

in Journal of Nuclear Engineering and Radiation Science (2018)

Aim of this work is the comparison of different turbulent models based on the Reynolds Averaged Navier-Stokes (RANS) equations in order to find out which model is the most suitable for the study of the ... [more ▼]

Aim of this work is the comparison of different turbulent models based on the Reynolds Averaged Navier-Stokes (RANS) equations in order to find out which model is the most suitable for the study of the channel thermal-hydraulics of the TRIGA Mark II reactor. Only the steady state behaviour (i.e. the full power stationary operational conditions) of the reactor has been considered. To this end, the RAS (Reynolds-Averaged Simulation) models available in the open source CFD software OpenFOAM have been applied to the most internal channel of the TRIGA and assessed against a Large Eddy Simulation (LES) model. The results of the latter approach, expressed in terms of axial velocity, turbulent viscosity, turbulent kinetic energy, and temperature have been compared with the results obtained by the RAS models available in OpenFOAM (k − ε, k − ω and Reynolds Stress Transport). Heat transfer is taken into account as well by means of the turbulent energy diffusivity parameter. The simulation results demonstrate how, amongst the RAS models, the k − ω SST is the one whose results are closer to the LES simulation. This model seems to be the best one for the treatment of turbulent flow within the TRIGA subchannel, offering a good compromise between accuracy and computational requirements. Since it is much less expensive than an LES model, it can be applied even to full core calculation, in order to obtain accurate results with less computational effort. [less ▲]

Detailed reference viewed: 83 (7 UL)
Full Text
Peer Reviewed
See detailA comparison between discrete analysis and a multiphase approach for predicting heat conduction in packed beds
Copertaro, Edoardo UL; Estupinan Donoso, Alvaro Antonio UL; Peters, Bernhard UL

in Proceedings of the 10th International Conference on Computer Modeling and Simulation (2018)

the Discrete Element Method (DEM) is a Lagrangian approach initially developed for predicting particles flow. The eXtended Discrete Element Method (XDEM) framework, developed at the LuXDEM Research Centre ... [more ▼]

the Discrete Element Method (DEM) is a Lagrangian approach initially developed for predicting particles flow. The eXtended Discrete Element Method (XDEM) framework, developed at the LuXDEM Research Centre of the University of Luxembourg, extends DEM by including the thermochemical state of particles, as well as their interaction with a Computational Fluid Dynamics (CFD) domain. The level of detail of its predictions makes the XDEM suite a powerful tool for predicting complex industrial processes like steel making, powder metallurgy and additive manufacturing. Like in any other DEM software, the critical aspect of the simulations is the computation requirement that grows rapidly as the number of particles increases. Indeed, such burden currently represents the main bottleneck to its full exploitation in large-scale scenarios. Digital Twin, a research project founded by the European Regional Development Fund (ERDF), aims at drastically accelerate XDEM through different approaches and make it an effective tool for numerical predictions in industry as well as virtual prototyping. The Multiphase Particle- In-Cell (MP-PIC) method has been introduced for reducing the computation burden of DEM. It has been initially developed for predicting particles flow and uses a two-way transfer of information between the Lagrangian entities and a computation grid. The method avoids explicit contact detection and can potentially achieve a drastic reduction of the time-to-solution respect to DEM. The present contribution introduces a multiphase approach for predicting the conductive heat transfer within a static packed bed of particles. Results from a test case are qualitatively and quantitatively compared against reference XDEM predictions. The method can be effectively exploited in combination with MP- PIC for predicting the thermochemical state of particles. [less ▲]

Detailed reference viewed: 19 (0 UL)
Full Text
Peer Reviewed
See detailDevelopment of a Data-Driven Approach based on Kalman filtering for CFD Reactor Analysis
Introini, Carolina; Cammi, Antonio; Lorenzi, Stefano et al

in PHYSOR 2018 (2018)

In the last several years, computer-based simulation has become an important analysis and design tool in many engineering fields. The common practice involves the use of low-fidelity models, which in most ... [more ▼]

In the last several years, computer-based simulation has become an important analysis and design tool in many engineering fields. The common practice involves the use of low-fidelity models, which in most cases are able to provide fairly accurate results while maintaining a low computational cost. However, for complex systems such as nuclear reactors, more detailed models are required for the in-depth analysis of the problem at hand, due for example to the complex geometries of the physical domain. Nevertheless, such models are affected by potentially critical uncertainties and inaccuracies. In this context, the use of data assimilation methods such as the Kalman filter to integrate local experimental data witihin the numerical model looks very promising as a high-fidelity analysis tool. In this work, the focus is the application of such methods to the problem of fluid-dynamics analysis of the reactor. Indeed, in terms of nuclear reactor investigation, a detailed characterization of the coolant behaviour within the reactor core is of manda- tory importance in order to understand, among others, the operating conditions of the system, and the potential occurrence of accident scenarios. In this context, the use of data assimilation methods allows the extraction of information of the thermo-dynamics state of the system in a benchmarked transitory in order to increase the fidelity of the com- putational model. Conversely to the current application of control-oriented black-box in the nuclear energy community, in this work the integration of the data-driven paradigm into the numerical formulation of the CFD problem is proposed. In particular, the al- gorithm outlined embeds the Kalman filter into a segregated predictor-corrector formu- lation, commonly adopted for CFD analysis. Due to the construction of the developed method, one of the main challenges achieved is the preservation of mass-conservation for the thermo-dynamics state during each time instant. As a preliminary verification, the proposed methodology is validated on a benchmark of the lid-driven cavity. The obtained results highlight the efficiency of the proposed method with respect to the state-of-art low fidelity approach. [less ▲]

Detailed reference viewed: 69 (1 UL)
Full Text
Peer Reviewed
See detailCoupled CFD-DEM with Heat and Mass transfer to Investigate the Melting of a Granular Packed Bed
Baniasadi, Mehdi UL; Baniasadi, Maryam UL; Peters, Bernhard UL

in Chemical Engineering Science (2017)

The eXtended Discrete Element Method (XDEM) platform which is a Coupled Eulerian-Lagrangian framework with heat and mass transfer, is extended for melting of granular packed beds. In this method, the ... [more ▼]

The eXtended Discrete Element Method (XDEM) platform which is a Coupled Eulerian-Lagrangian framework with heat and mass transfer, is extended for melting of granular packed beds. In this method, the fluid is simulated by computational fluid dynamics (CFD) and the soft-sphere discrete element approach (DEM) is used for the particle system. A four-way coupling accounts for solid-liquid interaction via drag and buoyancy forces and the collisions between the particles and the walls. The contact forces between the particles and wall-particle contacts have been calculated by the hertz-mindlin model. The particles heat up, melt and shrink due to heat and mass exchange, and the temperature distributions inside the particles are described. In order to validate the method, melting of a single ice particle and of a packed bed of ice in flowing water have been carried out. Very good agreement between the simulation and experiment has been achieved. The effects of the temperature and velocity of flowing water on melting rate are also discussed. [less ▲]

Detailed reference viewed: 127 (22 UL)
Full Text
See detailResolving Multiphase Flow through Packed Bed of Solid Particles Using eXtended Discrete Element Method with Porosity Calculation
Baniasadi, Maryam UL; Peters, Bernhard UL

in Industrial and Engineering Chemistry (2017)

Multiphase flow reactors such as trickle bed reactors are frequently used reactors in many industries. Understanding the fluid dynamics of these kinds of reactors is necessary to design and optimize them ... [more ▼]

Multiphase flow reactors such as trickle bed reactors are frequently used reactors in many industries. Understanding the fluid dynamics of these kinds of reactors is necessary to design and optimize them. The pressure drop and liquid saturation are the most important hydrodynamic parameters in these reactors, which depend highly on the porosity distribution inside the bed. The eXtended Discrete Element Method (XDEM) was applied as a numerical approach to model multiphase flow through packed beds of solid particles. This method has the ability to be coupled with Computational Fluid Dynamics (CFD) through interphase momentum transfer which makes it suitable for many Eulerian− Lagrangian systems. The XDEM also calculates the porosity distribution along the bed, which not only eliminates the empirical correlations but also makes it possible to investigate the maldistribution of liquid saturation inside the bed. The results for the hydrodynamics parameters were compared with experimental data, and satisfactory agreement was achieved. [less ▲]

Detailed reference viewed: 89 (18 UL)
Full Text
Peer Reviewed
See detailMultiscale model of sintering: diffusion and plastic flow
Kabore, Brice Wendlassida UL; Peters, Bernhard UL

Scientific Conference (2017, September 27)

Impacting particles or static aggregated particles at high temperature may undergo a permanent change of shape modifying the microstructure. Two particles in contact can develop some bonds within sub ... [more ▼]

Impacting particles or static aggregated particles at high temperature may undergo a permanent change of shape modifying the microstructure. Two particles in contact can develop some bonds within sub-second time. This fast sintering force in the particular case of the snow contribute to the rheological behavior and grain rearrangement [1]. Understanding the kinetics of sintering in granular material is of great importance in some engineering applications. For decades, diffusional processes have received more attention in investigations related to the mechanisms behind sintering [2]. Some works have suggested that the plastic flow might be neglected in sintering process for stresses are not high enough to cause dislocation. However, some studies have showed that stresses experienced in fine particles necks can be high enough and even lead to plasticity driven sintering. The importance of each mechanism in the sintering process may lie in the temporal and spatial scale of interest. Increasing importance is being accorded to the role of plastic flow in sintering. however, several investigations have proved that the conventional plasticity theory may fail to predict plastic activity at micro-scale, The objective of this work is to develop adequate computational model that includes instantaneous and time-dependent plastic flow at micro-scale. We aim at extending existing models of sintering and plasticity to cope with multiple spatial and temporal scales simulations using Extended Discrete Element Method. The numerical results are compare to experimental data on snow. [less ▲]

Detailed reference viewed: 136 (18 UL)
See detailDynamic Sintering of a High Temperature Granular Material: Experiments and Simulations
Willivald, Carolin; Kabore, Brice Wendlassida UL; Szabó, Denes et al

Scientific Conference (2017, September 26)

Snow changes from a porous solid to a granular material during deformation with high strain rates. This transition occurs in many cases where snow is relevant to engineering problems (vehicle mobility ... [more ▼]

Snow changes from a porous solid to a granular material during deformation with high strain rates. This transition occurs in many cases where snow is relevant to engineering problems (vehicle mobility, avalanche formation and prevention, skiing etc.). For the description of the fast deformation of snow the discrete element method (DEM) is a valuable tool, as it is able to account for both states and the transition between them: the interaction of the loose and bonded particles. For the development of a physically relevant DEM snow model [1] we investigate experimentally along with simulations the basic processes of the granular behavior of snow. In the granular state, sintering plays an important role for the dynamics of the particles. Via sintering the high temperature ice particles (homologous temperature 0.95) bond together and change the structure and the physical properties of the material. This temperature dependent sintering process, which happens in the time range of milliseconds to hours, is in the focus of the present work. The fast sintering of ice in the range of milliseconds has scarcely been investigated. However, from sintering studies with ice cones (radius of 3 mm) we know, that the sintering force is closely related to the contact area of the particles [2]. As the contact area changes considerably for complicated shapes, exhibited by natural snow crystals, we consider different snow types (grain shape and size), besides ice beads as spherical model snow. The latter one is used to exclude shape effects and to directly compare experiments to simulations with spherical particles. To be able to take the effects of the grain shape into account and to examine sintering in the time range of interest (seconds), we perform angle of repose experiments and simulations. Snow is sieved to pile up on a flat base until an angle of equilibrium, the angle of repose, is formed. This angle increases with the sintering of the particles, but also with the inter-particle friction. To analyze the contribution of the friction and the grain shape without sintering, we perform the experiments at a low temperature °C ( 0.87), where sintering can be neglected; thus, the angle of repose is determined by inter-particle friction. With these measurements, we calibrate the simulations. At higher temperatures (up to °C) sintering changes the angle of repose, and a physically relevant sintering law for real snow is established in the simulations. [less ▲]

Detailed reference viewed: 12 (3 UL)
Full Text
Peer Reviewed
See detailPreliminary investigation on the capability of eXtended Discrete Element method for treating the dripping zone of a blast furnace
Baniasadi, Maryam UL; Peters, Bernhard UL

in ISIJ International (2017), 58(1),

The role of molten iron and slag in the dripping zone of a blast furnace is very critical to reach a stable operational condition. The existence of several fluid phases and solid particles in the dripping ... [more ▼]

The role of molten iron and slag in the dripping zone of a blast furnace is very critical to reach a stable operational condition. The existence of several fluid phases and solid particles in the dripping zone of a blast furnace, makes the newly developed eXteneded Discrete Element Method (XDEM) as an Eulerian-Lagrangian approach, suitable to resolve the dripping zone of a blast furnace. In the proposed model, the fluid phases are treated by Computational Fluid Dynamics (CFD) while the solid particles are solved by Discrete Element Method (DEM). These two methods are coupled via momentum, heat and mass exchanges. The main focus of current study is to investigate the influence of packed properties such as porosity and particle diameters, calculated by the XDEM, on the fluid phases for isothermal. In order to present the capability of the XDEM for this application. The validity of the proposed model is demonstrated by comparing model prediction results with the available experimental data. [less ▲]

Detailed reference viewed: 62 (8 UL)
Full Text
Peer Reviewed
See detailOn the performance of an overlapping-domain parallelization strategy for Eulerian-Lagrangian Multiphysics software
Pozzetti, Gabriele UL; Besseron, Xavier UL; Rousset, Alban UL et al

in AIP Conference Proceedings ICNAAM 2017 (2017, September)

In this work, a strategy for the parallelization of a two-way CFD-DEM coupling is investigated. It consists on adopting balanced overlapping partitions for the CFD and the DEM domains, that aims to reduce ... [more ▼]

In this work, a strategy for the parallelization of a two-way CFD-DEM coupling is investigated. It consists on adopting balanced overlapping partitions for the CFD and the DEM domains, that aims to reduce the memory consumption and inter-process communication between CFD and DEM. Two benchmarks are proposed to assess the consistency and scalability of this approach, coupled execution on 252 cores shows that less than 1\% of time is used to perform inter-physics data exchange. [less ▲]

Detailed reference viewed: 150 (53 UL)
Full Text
Peer Reviewed
See detailComparing Broad-Phase Interaction Detection Algorithms for Multiphysics DEM Applications
Rousset, Alban UL; Mainassara Chekaraou, Abdoul Wahid UL; Liao, Yu-Chung UL et al

in AIP Conference Proceedings ICNAAM 2017 (2017, September)

Collision detection is an ongoing source of research and optimization in many fields including video-games and numerical simulations [6, 7, 8]. The goal of collision detection is to report a geometric ... [more ▼]

Collision detection is an ongoing source of research and optimization in many fields including video-games and numerical simulations [6, 7, 8]. The goal of collision detection is to report a geometric contact when it is about to occur or has actually occurred. Unfortunately, detailed and exact collision detection for large amounts of objects represent an immense amount of computations, naively n 2 operation with n being the number of objects [9]. To avoid and reduce these expensive computations, the collision detection is decomposed in two phases as it shown on Figure 1: the Broad-Phase and the Narrow-Phase. In this paper, we focus on Broad-Phase algorithm in a large dynamic three-dimensional environment. We studied two kinds of Broad-Phase algorithms: spatial partitioning and spatial sorting. Spatial partitioning techniques operate by dividing space into a number of regions that can be quickly tested against each object. Two types of spatial partitioning will be considered: grids and trees. The grid-based algorithms consist of a spatial partitioning processing by dividing space into regions and testing if objects overlap the same region of space. And this reduces the number of pairwise to test. The tree-based algorithms use a tree structure where each node spans a particular space area. This reduces the pairwise checking cost because only tree leaves are checked. The spatial sorting based algorithm consists of a sorted spatial ordering of objects. Axis-Aligned Bounding Boxes (AABBs) are projected onto x, y and z axes and put into sorted lists. By sorting projection onto axes, two objects collide if and only if they collide on the three axes. This axis sorting reduces the number of pairwise to tested by reducing the number of tests to perform to only pairs which collide on at least one axis. For this study, ten different Broad-Phase collision detection algorithms or framework have been considered. The Bullet [6], CGAL [10, 11] frameworks have been used. Concerning the implemented algorithms most of them come from papers or given implementation. [less ▲]

Detailed reference viewed: 168 (45 UL)
Full Text
Peer Reviewed
See detailConversion analysis of a cylindrical biomass particle with a DEM-CFD coupling approach
Mohseni, Mohammad UL; Peters, Bernhard UL; Baniasadi, Mehdi UL

in Case Studies in Thermal Engineering (2017), 10

Detailed reference viewed: 31 (5 UL)
Full Text
Peer Reviewed
See detailParallelizing XDEM: Load-balancing policies and efficiency, a study
Rousset, Alban UL; Besseron, Xavier UL; Peters, Bernhard UL

Scientific Conference (2017, September)

In XDEM, the simulation domain is geometrically decomposed in regular fixed-size cells that are used to distribute the workload between the processes. The role of the partitioning algorithm is to ... [more ▼]

In XDEM, the simulation domain is geometrically decomposed in regular fixed-size cells that are used to distribute the workload between the processes. The role of the partitioning algorithm is to distribute the cells among all the processes in order to balance the workload. To accomplish this task, the partitioning algorithm relies on a computing/communication cost that has been estimated for each cell. A proper estimation of these costs is fundamental to obtain pertinent results during this phase. The study in the work is twofold. First, we integrate five partitioning algorithms (ORB, RCB, RIB, kway and PhG) in the XDEM framework [1]. Most of these algorithms are implemented within the Zoltan library [2], a parallel framework for partitioning and ordering problems. Secondly, we propose different policies to estimate the computing cost and communication cost of the different cells composing the simulation domain. Then, we present an experimental evaluation and a performance comparison of these partitioning algorithms and cost-estimation policies on a large scale parallel execution of XDEM running on the HPC platform of the University of Luxembourg. Finally, after explaining the pros and cons of each partitioning algorithms and cost-estimation policies, we discuss on the best choices to adopt depending on the simulation case. [less ▲]

Detailed reference viewed: 75 (18 UL)
Full Text
Peer Reviewed
See detailFlow characteristics of metallic powder grains for additive manufacturing
Peters, Bernhard UL; Pozzetti, Gabriele UL

in EPJ Web of Conferences (2017), 13001

Directed energy deposition technologies for additive manufacturing such as laser selective melting (SLM) or electron beam melting (EBM) is a fast growing technique mainly due to its flexibility in product ... [more ▼]

Directed energy deposition technologies for additive manufacturing such as laser selective melting (SLM) or electron beam melting (EBM) is a fast growing technique mainly due to its flexibility in product de- sign. However, the process is a complex interaction of multi-physics on multiple length scales that are still not entirely understood. A particular challenging task are the flow characteristics of metallic powder ejected as jets from a nozzle and shielded by an inert turbulent gas flow. Therefore, the objective is to describe numerically the complex interaction between turbulent flow and powder grains. In order to include both several physical processes and length scales an Euler-Lagrange technology is applied. Within this framework powder is treated by the Discrete-Element-Method, while gas flow is described by Euler approaches as found in classical Compu- tational Fluid Dynamics (CFD). The described method succeeded in delivering more accuracy and consistency than a standard approach based on the volume averaging technique and therefore, is suited for the solution of problems within an engineering framework. [less ▲]

Detailed reference viewed: 155 (37 UL)
See detailInvestigating Multiphase flow Behavior in Trickle Bed Reactors using eXtended Discrete Element Method (XDEM)
Baniasadi, Maryam UL; Peters, Bernhard UL

Scientific Conference (2017, May 08)

The existence of multiphase flows through packed bed of solid particles in broad spectrum of engineering disciplines such as chemical industries, petroleum engineering, wastewater treatment is undeniable ... [more ▼]

The existence of multiphase flows through packed bed of solid particles in broad spectrum of engineering disciplines such as chemical industries, petroleum engineering, wastewater treatment is undeniable. One frequently used reactor of this type is a trickle bed reactor that usually contains particulate phase of which the interstitial space is filled with gas and liquid phases. Based on the direction of the fluid flow they can be classified as cocurrent downflow trickle bed reactors, counter-current trickle bed reactors and cocurrent upflow packed bubble reactors. In these kind of problems numerical simulations can help to gain a better process understanding. In the current distribution, a numerical method so called Extended Discrete Element Method (XDEM) was applied to model multiphase flow through packed bed of solid particles which has the ability to be coupled to Computational Fluid Dynamics (CFD) through interphase momentum transfer. In this coupled solver the fluid phases are treated by CFD while the position and orientation of the particles in each CFD cell and the porosity distribution through packed bed are provided by XDEM. In order to validate the code, two important hydrodynamic parameters such as pressure drop and liquid hold up were investigated and satisfactory agreement between predicted and experimental data was achieved. The model results demonstrate enormous effect of solid particles on the deviation of fluid phases while passing through packed bed by investigating parameters such as velocity and drag force. [less ▲]

Detailed reference viewed: 103 (15 UL)