References of "Vainchenker, William"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailOverexpression of the partially activated alpha(IIb)beta3D723H integrin salt bridge mutant downregulates RhoA activity and induces microtubule-dependent proplatelet-like extensions in Chinese hamster ovary cells
Schaffner-Reckinger, Elisabeth UL; Salsmann, Alexandre UL; Debili, Najet et al

in Journal of Thrombosis and Haemostasis [=JTH] (2009), 7(7), 1207-1217

BACKGROUND: We have recently reported a novel mutation in the beta3 subunit of the platelet fibrinogen receptor (alpha(IIb)beta3D723H) identified in a patient with dominantly inherited ... [more ▼]

BACKGROUND: We have recently reported a novel mutation in the beta3 subunit of the platelet fibrinogen receptor (alpha(IIb)beta3D723H) identified in a patient with dominantly inherited macrothrombocytopenia, and we have shown that this mutation promotes a new phenotype in Chinese hamster ovary (CHO) cells, characterized by fibrinogen-dependent, microtubule-driven proplatelet-like cell extensions. RESULTS: Here we demonstrate that the partially activated alpha(IIb)beta3D723H or alpha(IIb)beta3D723A salt bridge mutants, but not fully activated alpha(IIb)beta3 mutants, cause this phenotype. Time-lapse videomicroscopy clearly differentiated these stable microtubule-driven and nocodazole-sensitive extensions from common dynamic actin-driven pseudopodia. In addition, overexpression of a mitochondrial marker confirmed their functional role in organelle transport. Comparative immunofluorescence analysis of the subcellular localization of alpha(IIb)beta3, the focal adhesion proteins talin or vinculin and actin revealed a similar membrane labeling of CHO cell extensions and CD34+-derived megakaryocyte proplatelets. Mutant alpha(IIb)beta3D723H signaling was independent of Src, protein kinase C or phosphoinositide 3-kinase, but correlated with decreased RhoA activity as compared with wild-type alpha(IIb)beta3 signaling, reminiscent of integrin signaling during neurite outgrowth. Accordingly, overexpression of constitutively active RhoA in CHO alpha(IIb)beta3D723H cells prevented protrusion formation on fibrinogen. Most interestingly, RhoA/ROCK inhibition was necessary, but not sufficient, and integrin activity was additionally required to induce CHO cell extension formation. CONCLUSIONS: CHO alpha(IIb)beta3D723H cell protrusions and megakaryocyte proplatelets, like neuronal cell neurites, result from a common integrin-dependent signaling pathway, promoting strongly decreased RhoA activity and leading to microtubule-driven formation of cytoplasmic extensions. [less ▲]

Detailed reference viewed: 118 (4 UL)
Full Text
Peer Reviewed
See detailA nonsynonymous SNP in the ITGB3 gene disrupts the conserved membrane-proximal cytoplasmic salt bridge in the αIIbβ3 integrin and cosegregates dominantly with abnormal proplatelet formation and macrothrombocytopenia
Ghevaert, Cedric; Salsmann, Alexandre UL; Watkins, Nicholas A. et al

in Blood (2008), 111(7), 3407-3414

We report a 3-generation pedigree with 5 individuals affected with a dominantly inherited macrothrombocytopenia. All 5 carry 2 nonsynonymous mutations resulting in a D723H mutation in the beta3 integrin ... [more ▼]

We report a 3-generation pedigree with 5 individuals affected with a dominantly inherited macrothrombocytopenia. All 5 carry 2 nonsynonymous mutations resulting in a D723H mutation in the beta3 integrin and a P53L mutation in glycoprotein (GP) Ibalpha. We show that GPIbalpha-L53 is phenotypically silent, being also present in 3 unaffected pedigree members and in 7 of 1639 healthy controls. The beta3-H723 causes constitutive, albeit partial, activation of the alphaIIbbeta3 complex by disruption of the highly conserved cytoplasmic salt bridge with arginine 995 in the alphaIIb integrin as evidenced by increased PAC-1 but not fibrinogen binding to the patients' resting platelets. This was confirmed in CHO alphaIIbbeta3-H723 transfectants, which also exhibited increased PAC-1 binding, increased adhesion to von Willebrand factor (VWF) in static conditions and to fibrinogen under shear stress. Crucially, we show that in the presence of fibrinogen, alphaIIbbeta3-H723, but not wild-type alphaIIbbeta3, generates a signal that leads to the formation of proplatelet-like protrusions in transfected CHO cells. Abnormal proplatelet formation was confirmed in the propositus's CD34+ stem cell-derived megakaryocytes. We conclude that the constitutive activation of the alphaIIbbeta3-H723 receptor causes abnormal proplatelet formation, leading to incorrect sizing of platelets and the thrombocytopenia observed in the pedigree. [less ▲]

Detailed reference viewed: 85 (3 UL)