
xxx dmj8255 August 12, 2009 22:8

A SYMPLECTIC MAP BETWEEN HYPERBOLIC AND
COMPLEX TEICHMÜLLER THEORY

KIRILL KRASNOV and JEAN-MARC SCHLENKER

Abstract
Let S be a closed, orientable surface of genus at least 2. The space TH ×ML, where
TH is the “hyperbolic” Teichmüller space of S and ML is the space of measured
geodesic laminations on S, is naturally a real symplectic manifold. The space CP
of complex projective structures on S is a complex symplectic manifold. A relation
between these spaces is provided by Thurston’s grafting map Gr. We prove that this
map, although not smooth, is symplectic. The proof uses a variant of the renormalized
volume defined for hyperbolic ends.

1. Introduction and main results

1.1. Historical background
This article addresses an old question—what relation exists between “real” and “com-
plex” descriptions of the Teichmüller space of Riemann surfaces. The milestones in a
century of work on this question are presented in the following paragraphs.

The early approach to the uniformization problem, due to Poincaré, was based
on the so-called Liouville equation, which, if solved, allows one to find a hyperbolic
(constant negative curvature) metric conformal to a given metric. This approach proved
too difficult and was later abandoned in favor of an approach based on conformal
mappings into the unit circle and Fuchsian groups. Thus, according to the classical
uniformization theorem [P], any Riemann surface can be conformally mapped into
the interior of the unit disc and can thus be realized as the quotient H 2/�, where
� ⊂ SL(2, R) is a Fuchsian group.

A deformation theory for Riemann surfaces was developed much later in sev-
eral key works by Teichmüller (see, in particular, [Te]). The key technology used
was that of quasi-conformal mappings. Such mappings naturally give rise to holo-
morphic quadratic differentials (as their Schwartzian derivatives) and can in turn be
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reconstructed from quadratic differentials via a simple second-order differential equa-
tion. Quasi-conformal mappings also naturally lead to the concept of Beltrami differ-
entials, and the later can be seen to serve as tangent vectors to the space of Riemann
surfaces. The Teichmüller space can then be defined as the space of all Fuchsian
groups that are produced from a given one by quasi-conformal mappings. It can be
shown to be an open ball in the Banach space of Beltrami differentials (see [A] for
details). The described complex viewpoint on the Teichmüller space also allows us to
define a natural complex structure on it and then shows that it is a Kähler manifold,
where the Kähler metric is that of Weil-Petersson.

At the same time, the complex viewpoint originating in works of Teichmüller
makes the geometrical aspects of the question quite hidden. An alternative description
that makes the geometry manifest was developed by Fenchel and Nielsen (see, e.g.,
[FN]). This describes a Riemann surface as being glued from the so-called pairs of
pants. The arising coordinates on the Teichmüller space are those of the length and
twist parameters. Despite its intuitive attractiveness, the Fenchel-Nielsen description is
often much harder to deal with in practice, as it turns out to be very hard to characterize
the Fuchsian group thats results from gluing in sufficient generality. It also proved
remarkably difficult to relate this “real” description to the “complex” one at the root
of Teichmüller’s theory.

A much closer connection between the real and complex pictures was provided
by Thurston in [Th] with his deformation theory of hyperbolic metrics on a surface
via measured geodesic laminations, earthquakes (not considered in this article), and
grafting. In grafting, one (heuristically) cuts the surface in question along leaves of
a lamination and glues in flat strips of the width prescribed by the measure, thus
obtaining a surface with a new projective structure on it; one can then read off the
underlying complex structure to get a new point in Teichmüller space. One thus gets
a version of deformation theory in which all geometric aspects are manifest. At the
same time, there is a link to the “complex” description via projective structures.

This article goes one step further in the direction opened by Thurston. Thus,
we study a map very closely related to the grafting, but this time not from the Te-
ichmüller space T to itself, as would be relevant for the deformation theory. Instead,
we consider the grafting as a map from the twice bigger space T times the space of
measured geodesic laminations to the space of complex projective structures. Both
spaces are naturally symplectic manifolds, but the first is real and the second is
complex. We then show that the corresponding grafting map is symplectic. Or, using
physics terminology, we show that the grafting map is a canonical transformation
from real to holomorphic coordinates on the phase space—the cotangent bundle over
the Teichmüller space of Riemann surfaces. This space can be shown to be the phase
space of (2 + 1)-dimensional gravity (see, e.g., [KS1] for a description emphasizing
this aspect). Thus, our results can be seen as providing an analog of the q ± ip
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coordinates of classical mechanics for the dynamical system of (2 + 1)-gravity. The
proof we give is geometrical and, in fact 3-dimensional in nature.

Let us now describe the results of this work in more technical terms. Throughout
this article, S is a closed, orientable surface of genus g at least 2, T is the Teichmüller
space of S, CP the space of complex projective structures on S, and ML is the space
of measured laminations on S.

1.2. The “hyperbolic” Teichmüller space
There are several quite distinct ways to define the Teichmüller space of S, for example,
as the space of complex structures on S, or as a space of (particular) representations
of π1(S) in PSL(2, R) (modulo conjugation). In this section, we consider what can
be called the “hyperbolic” Teichmüller space, defined as the space of hyperbolic
metrics on S, considered up to isotopy. In this guise it is sometimes called the Fricke
space of S. Here we denote this space by TH to highlight its “hyperbolic” nature.
This description emphasizes geometric properties of T, while some other properties,
notably the complex structure on T, are not expressed.

There is a natural identification between TH × ML and the cotangent bundle
of TH , which can be defined as follows. Let l ∈ ML be a measured lamination
on S. For each hyperbolic metric m ∈ TH on S, let Lm(l) be the geodesic length
of l for m (as studied, e.g., in [Ke1], [Wo3]). Thus m �→ Lm(l) is a function on T,
which is differentiable. For m0 ∈ TH , the differential of m �→ Lm(l) at m0 is a
vector in T ∗

m0
TH , which we call δ(m, l). This defines a function δ : TH × ML →

T ∗TH , which is the identification we wish to use here. It is proved in Section 2 (see
Lemma 2.3) that δ is indeed one-to-one (this fact should be quite obvious to specialists;
a proof is included here for completeness). Bonahon proved (see [B1]) that δ is
tangentiable; that is, the image by δ of a tangent vector is well defined. Moreover, the
tangent map is invertible at each point.

Let ωH denote the cotangent symplectic structure on T ∗TH . The map δ can
be used to pull back to ωH to TH × ML, making TH × ML into a symplectic
manifold. Somewhat abusing notation, we call ωH again the symplectic form on
TH × ML obtained in this manner. A more involved but explicit description of ωH

on TH × ML is recalled below in Section 1.9.
Note that the identification δ between TH ×ML and T ∗TH is not identical with

the better-known identification, which goes through measured foliations and quadratic
differentials (see, e.g., [FLP]).

1.3. The “complex” Teichmüller space and complex projective structures
We now consider the “complex” Teichmüller space of S, denoted here by TC , which
is the space of complex structures on S. Of course, there is a canonical identification
between TH and TC — there is a unique hyperbolic metric in each conformal class
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on S. As this map is not explicit, however, it appears helpful to keep in mind the
distinction between the two viewpoints. Note that the term complex could be used
here in two different, albeit related, senses. One is the above definition of TC as the
space of complex structures on S. The other is related to the well-known deformation
theory of TC in terms of Beltrami differentials. Considered this way, the complex
structure on TC becomes manifest. So it is useful to keep in mind that the word
complex refers both to the complex structures on S and on TC itself.

Now let CP denote the space of (equivalence classes of) CP1-structures (or
complex projective structures) on S. Recall that a (complex) projective structure on
S is a maximal atlas of charts from S into CP1 such that all transition maps are
Möbius transformations. Such a structure naturally yields a holonomy representation
hol : π1(S) → PSL(2, C), as well as an hol(π1(S))-equivariant developing map
dev : S̃ → CP1.

There is a natural relation between complex projective structures on S and complex
structures, along with a holomorphic quadratic differential on S. Thus, let σ be
a complex projective structure on S, and let σ0 be the Fuchsian CP1-structure on
S obtained by the Fuchsian uniformization of the complex structure underlying σ .
Then the Schwarzian derivative of the complex map from (S, σ0) to (S, σ ) is a
quadratic differential q on S, holomorphic with respect to the conformal structure
c of both σ and σ0, and the map sending σ to (c, q) is a homeomorphism (see,
e.g., [D], [Mc]).

Recall also that the space of couples (c, q), where c is a complex structure on
S and q is a quadratic holomorphic differential on (S, c), is naturally identified with
the complexified cotangent bundle of TC (see, e.g., [A]). Thus, CP is naturally a
complex symplectic manifold. We denote the associated (complex) symplectic form
by ωC, and its real part by ωC .

An equivalent way to describe the complex symplectic structure on CP is via
the holonomy representation. This viewpoint naturally leads to a complex symplectic
structure on CP (see [G]), defined in terms of the cup-product of two 1-cohomology
classes on S with values in the appropriate Lie algebra bundle over S. We call this
complex symplectic structure ωG here. The fact that this complex symplectic structure
is the same (up to a constant) as ωC was established by Kawai in [K].

Note that [K] uses another way to associate a holomorphic quadratic differential
to a complex projective structure on S, using as a reference point a complex projective
structure given by the simultaneous uniformization (Bers slice) instead of the Fuchsian
structure σ0. This identification is not as canonical as the one above since it depends on
a chosen reference conformal structure needed for the simultaneous uniformization.
It turns out that the symplectic structure obtained in this way on CP is independent
of the reference point and is the same as the one coming from the above construction
using the Fuchsian projective structure σ0 (see Lemma 4.8).
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1.4. The grafting map
The “hyperbolic” and the “complex” descriptions of Teichmüller space behave differ-
ently in some key aspects, and it is interesting to understand the relation between them.
This relation is given by the well-known grafting map Gr : TH × ML �→ CP.

The grafting map is defined as follows. When m ∈ TH is a hyperbolic metric and
l ∈ ML is a weighted multicurve, Grl(m) can be obtained by cutting (S, m) open
along the leaves of l, gluing in each cut a flat cylinder of width equal to the weight of
the curve in l, and considering the complex projective structure underlying this metric.
This map extends by continuity from weighted multicurves to measured laminations,
a fact discovered by Thurston (see, e.g., [D]). Out of Gr one can obtain a map from the
Teichmüller space to itself by fixing a measured lamination l ∈ ML and reading the
conformal structure underlying Grl(m); this map is known to be a homeomorphism
(see [SW]). Grafting on a fixed hyperbolic surface also defines a homeomorphism
between ML and T (see [DW]).

It is possible to compose δ−1 : T ∗TH → TH × ML with the grafting map
Gr : TH ×ML → CP. The resulting map between smooth manifolds is tangentiable
by the results mentioned above, but it turns out to be smoother.

LEMMA 1.1
The map Gr ◦ δ−1 : T ∗TH → CP is C1.

The proof of Lemma 1.1 is in Section 2.
Our main result in this article is to prove that this composed map is symplectic.

This can be stated as follows, using the symplectic structure induced on T × ML
by ωH .

THEOREM 1.2
The pullback of the symplectic form ωC on CP by the grafting map is the form ωH on
TH × ML, up to a factor of 2: Gr∗ωC = 2ωH .

The meaning of the theorem is easier to appreciate when considering the composed
map Gr ◦ δ−1 : T ∗TH → CP. Since this map is C1 by Lemma 1.1 we can use it to
pull back the symplectic form ωC .

We work with symplectic forms ω given in terms of Liouville forms β as dβ = ω.
The proof shows that the image by Gr of the Liouville form of 2ωH is the Liouville
form of ωC plus the differential of a function. In Theorem 1.6 we give an alternative
statement of Theorem 1.2 in terms of Lagrangian submanifolds.

Our proof of Theorem 1.2 is based on geometrically finite 3-dimensional hyper-
bolic ends. We recall this notion in Section 1.5.
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1.5. Hyperbolic ends
Definition 1.3
A hyperbolic end is a 3-manifold M , homeomorphic to S × R>0, where S is a closed
surface of genus at least 2, endowed with a (noncomplete) hyperbolic metric such that
• the metric completion corresponds to S × R≥0;
• the metric g extends to a hyperbolic metric in a neighborhood of the boundary

in such a way that S × {0} corresponds to a pleated surface;
• S × R>0 is concave in the neighborhood of this boundary.
Given such a hyperbolic end, we call ∂0M the metric boundary corresponding to
S × {0}, and we call ∂∞M the boundary at infinity. We call GS the space of those
hyperbolic ends.

It is simpler to consider a quasi-Fuchsian hyperbolic manifold N . The complement
of its convex core is the disjoint union of two hyperbolic ends. A hyperbolic end,
however, as defined above, does not always extend to a quasi-Fuchsian manifold.
Note also that the hyperbolic ends as defined here are always convex cocompact,
so our definition is more restrictive than others found elsewhere, and the longer
name “convex cocompact hyperbolic end” would perhaps be more precise. We do not
consider here degenerate hyperbolic ends, with an end invariant which is a lamination
rather than a conformal structure; the fact that S × {0} is a convex pleated surface in
our definition prevents the other end from being degenerate at infinity.

There are two natural ways to describe a hyperbolic end, either from the metric
boundary or from the boundary at infinity, both of which are well known. On the
metric boundary side, ∂0M has an induced metric m which is hyperbolic and pleated
along a measured lamination l. It is well known that m and l uniquely determine M

(see, e.g., [D]).
In addition, ∂∞M carries naturally a complex projective structure, σ , because

it is locally modeled on the boundary at infinity of H 3 and hyperbolic isometries
act at infinity by Möbius transformations. This complex projective structure has an
underlying conformal structure, c. Moreover, the construction described above as-
signs to ∂∞M a quadratic holomorphic differential q, which is none other than the
Schwartzian derivative of the complex map from (S, σ0) to (S, σ ). It follows from
Thurston’s original construction of the grafting map that σ = Grl(m).

1.6. Convex cores
Before we describe how the above hyperbolic ends can be of any use for the questions
considered in this article, let us consider what is perhaps a more familiar situation.
Thus, consider a hyperbolic 3-manifold with boundary N , which admits a convex
cocompact hyperbolic metric. We call G(N) the space of such convex cocompact
hyperbolic metrics on N . Let g ∈ G; then (N, g) contains a smallest nonempty
subset K which is geodesically convex (any geodesic segment with endpoints in K
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is contained in K) (its convex core is denoted here by CC(N)). So CC(N) is then
homeomorphic to N , its boundary is the disjoint union of closed pleated surfaces,
each of which has an induced metric which is hyperbolic, and each is pleated along a
measured geodesic lamination (see, e.g., [EM]). So we obtain a map

i ′ : G(N) → TH (∂N) × ML(∂N).

Composing i ′ with the identification δ between TH × ML and T ∗TH , we obtain
an injective map

i : G(N) → T ∗TH (∂N).

THEOREM 1.4
The image i(G(N)) is a Lagrangian submanifold of (T ∗TH (∂N), ωH ).

The map i is not smooth, but as in the case of the map δ defined above, it is tangentiable
(see [B3], [B4]). The natural map from G(N) to the space of complex projective
structure on each connected component of the boundary at infinity is smooth, and it
follows from Theorem 2.4 that i is C1.

The proof given below shows that the restriction to i(G(N)) of the Liouville form
of T ∗TH (∂N) is the differential of a function.

The reason for considering convex cores in our context becomes clear in
Sections 1.7 and 1.8.

1.7. Kleinian reciprocity
There is a direct relationship between Theorems 1.4 and 1.2 in that Theorem 1.4
can be considered a corollary of Theorem 1.2. This follows the so-called “Kleinian
reciprocity” of McMullen. Thus, consider a Kleinian manifold M , and let G(M) be
the space of complete convex cocompact hyperbolic metrics on M . Each g ∈ G(M)
gives rise to a projective structure on the boundary at infinity ∂∞M . This gives an
injective map j : G(M) → T ∗TC(∂∞M).

THEOREM 1.5 (see McMullen [Mc])
The image j (G(M)) is a Lagrangian submanifold of (T ∗TC(∂∞M), ωC).

This statement is quite analogous to Theorem 1.4, with the only difference being that
the “hyperbolic” cotangent bundle at boundaries of the convex core is replaced by
the “complex” one. This statement (under a different formulation) is proved in [Mc,
Appendix] under the name of “Kleinian reciprocity”, and it is an important technical
statement allowing the author to prove the Kähler hyperbolicity of Teichmüller space.
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Let us note that Theorem 1.4 is a direct consequence of Theorems 1.2 and 1.5.
This becomes clearer later when we present another statement of Theorem 1.2. In
Section 1.8, we give a direct proof of Theorem 1.4, thus also giving a more direct
proof of the Kleinian reciprocity result.

Using the result of Kawai [K], Theorem 1.5 is equivalent to the fact that the
subspace of complex projective structures on ∂N obtained from hyperbolic metrics
on N is a Lagrangian submanifold of (CP(∂N), Re(ωG)), a fact previously known to
Kerckhoff [Ke2] through a different, topological argument involving Poincaré duality.

1.8. A Lagrangian translation of Theorem 1.2
In a similar vein to what we have done above, let us consider the space GS of hyperbolic
ends. Each such space gives a point in TH × ML for its pleated surface boundary
and a point in T ∗TC for its boundary at infinity. Thus, composing this with the map
δ, we get an injective map

k : G → T ∗TH × T ∗TC.

Our main Theorem 1.2 can then be restated as follows.

THEOREM 1.6
The image k(G) is a Lagrangian submanifold of T ∗TH × T ∗TC .

We prove our main result in this version, which is clearly equivalent to Theorem 1.2.
Let us stress again that k(G) is not smooth but only the graph of a C1 map.

1.9. The intersection form and ωH

An efficient combinatorial description of TH was given in Thurston’s article on
earthquakes. Later, a powerful analytical realization of the same ideas was developed
in a series of articles by Bonahon [B1], [B2]. The earthquake description of TH is
somewhat related to a much earlier parametrization of the same space in terms of the
Fenchel-Nielsen coordinates, whose idea is to glue a Riemann surface from pairs of
pants, the pants being characterized by the length of their boundary components and
the gluing being characterized by twists parameters. Thurston’s earthquake description
of TH describes a hyperbolic metric m ∈ TH as obtained by a left earthquake on a
measured lamination from another base hyperbolic metric m0. It is remarkable that this
measured lamination completely determines the earthquake and is in turn completely
determined by the two metrics m, m0 ∈ TH .

In Thurston’s description, the hyperbolic Teichmüller space is parametrized by
the space of measured geodesic laminations. However, the space ML does not
possess a natural differentiable structure, which makes the analysis on this space
hardly possible. One of the key achievements of Bonahon’s work in [B1] and [B2] was
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to develop the calculus on ML using R-valued transverse cocycles or, equivalently,
transverse Hölder distributions for geodesic laminations. Essentially, Bonahon gave
a very elegant description of the tangent space to ML. This allowed him to provide
a characterization of the space TH itself as homeomorphic to an open cone in a
vector space H(λ, R) of R-valued transverse cocycles for a lamination λ (see [B1,
Theorem A]) and also prove that the vector fields tangent to ML are Hamiltonian
vector fields with respect to Thurston’s symplectic structure on H(λ, R), with the
Hamiltonian function being essentially the hyperbolic length (see [B1]).

In a later work, Sözen and Bonahon [SB] established that Thurston’s symplectic
form on H(λ, R) is (up to a constant) an image of the Weil-Petersson symplectic
form on TH under the homeomorphism of this space into H(λ, R). The proof goes
through Goldman’s characterization of the Weil-Petersson symplectic form in terms
of a cup product in a twisted cohomology group [G]. Thus, Bonahon’s description of
TH in terms of shearing coordinates can be said to provide a symplectic map from
TH with its usual Weil-Petersson symplectic form to the vector space H(λ, R) with
its Thurston’s symplectic form. Theorem 1.2 can be construed as an analog concerning
related but twice bigger spaces: on one hand, TH × ML, while on the other, the
space CP of complex projective structures on S.

The space TH ×ML is naturally a real symplectic manifold. The length function
has an extension Lm : H(λ, R) → R, l̇ ∈ H(λ, R) → Lm(l̇) ∈ R to geodesic
laminations with transverse cocycles, where it can be interpreted as a differential of
the corresponding function on ML (see [B1]). Now, given a vector field ṁ tangent
to TH , we obtain a pairing Lṁ(l̇) as the derivative of Lm(l̇) in the direction of ṁ.
Consider the following two-form on TH × ML:

ω′
H

(
(ṁ1, l̇1), (ṁ2, l̇2)

) = Lṁ1 (l̇2) − Lṁ2 (l̇1). (1)

LEMMA 1.7
This two-form is equal to the symplectic form ω′

H = ωH .

Proof
Let (m, l) ∈ T × ML, then δ(m, l) = (m, dL·(l)) ∈ T ∗TH . Denote by β the
Liouville form of (T ∗TH , ωH ), so that, if (m, u) ∈ T ∗TH and (ṁ, u̇) ∈ T(m,u)T

∗TH ,
then

β(ṁ, u̇) = u(ṁ).

If (ṁ, l̇) ∈ T (T × ML) then β(dδ(ṁ, l̇)) = Lṁ(l). This corresponds precisely to
the Liouville form of ω′

H , and the result follows. �
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1.10. Another possible proof ?
Let us note that an alternative proof that only uses 2-dimensional quantities may
be possible, based essentially on the result of [SB]. For this, one would need to
extend the ideas developed in this work to shear-bend coordinates on TH × ML
and show that the symplectic form ωH on H(λ, R) extends to a complex symplectic
form on the vector space of complex-valued cocycles for λ. Presumably this complex
symplectic form would then coincide with the complexified Thurston symplectic form
on H(λ, C).

According to [SB], Thurston’s symplectic form on H(λ, R) is equal to the Weil-
Petersson symplectic form on the real character variety. This equality should extend to
the complexified Thurston symplectic form and the Weil-Petersson symplectic form
on the complex character variety, because both are holomorphic.

It was proved by Kawai [K], however, that the Weil-Petersson form on the complex
character variety corresponds to the complex symplectic cotangent symplectic form
on T ∗TC , and so Theorem 1.2 should follow.

Note that this line of reasoning is quite different from the proof considered below,
which uses mostly the Bonahon-Schläfli formula in Lemma 2.1 (or more precisely, the
dual formula in Lemma 2.2). The arguments outlined in this section could therefore
be combined with those developed in this article, for instance to obtain a new proof
of Kawai’s result in [K] from the results of [SB], holomorphic continuation, and the
use of the renormalized volume.

1.11. Cone singularities
One interesting feature of the arguments used here is that they appear likely to extend
to the setting of hyperbolic surfaces with cone singularities of angle less than π . One
should then use hyperbolic ends with particles (i.e., cone singularities of angle less
than π going from the interior boundary to the boundary at infinity, as already done
in [KS1] and to some extent in [KS2]).

2. The Schläfli formula and the dual volume
In this section we recall the Schläfli formula, first in the simple case of hyperbolic
polyhedra, then in the more involved setting of convex cores of hyperbolic 3-manifolds
(as extended by Bonahon). We then deduce from Bonahon’s Schläfli formula a dual
formula for the first-order variation of the dual volume of the convex core. Finally, we
give the proof of Lemma 1.1.

2.1. The Schläfli formula for hyperbolic polyhedra
Let P ⊂ H 3 be a convex polyhedron. The Schläfli formula (see, e.g., [Mi]) describes
the first-order variation of the volume of P , under a first-order deformation, in terms



xxx dmj8255 August 12, 2009 22:8

A SYMPLECTIC MAP 11

of the lengths and the first-order variations of the angles, and so

dV = 1

2

∑
e

Ledθe, (2)

where the sum is over the edges of P , Le is the length of the edge e, and θe is its
exterior dihedral angle.

There is also an interesting dual Schläfli formula. Let

V ∗ = V − 1

2

∑
e

Leθe

be the dual volume of P ; then, still under a first-order deformation of P ,

dV ∗ = −1

2

∑
e

θedLe. (3)

This follows from the Schläfli formula (2) by an elementary computation.

2.2. First-order variations of the volume of the convex core
In many ways, the convex core of a quasi-Fuchsian manifold is reminiscent of a
polyhedron, with the edges and their exterior dihedral angles being replaced by a
measured lamination describing the pleating of the boundary (see, e.g., [Th], [EM]).

Bonahon [B3] has extended the Schläfli formula to this setting as follows. Let M

be a convex cocompact hyperbolic manifold (e.g., a quasi-Fuchsian manifold), let μ

be the induced metric on the boundary of the convex core, and let λ be its measured
bending lamination. By a first-order variation of M we mean a first-order variation of
the representation of the fundamental group of M . Bonahon shows that the first-order
variation of λ under a first-order variation of M is described by a transverse Hölder
distribution λ′, and there is a well-defined notion of length of such transverse Hölder
distributions. This leads to a version of the Schläfli formula.

LEMMA 2.1 (Bonahon-Schläfli formula [B3])
The first-order variation of the volume VC of the convex core of M , under a first-order
variation of M , is given by

dVC = 1

2
Lμ(λ′).

Here λ′ is the first-order variation of the measured bending lamination, which is a
Hölder cocycle, so that its length for μ can be defined (see [B1], [B2], [B3], [B4]).
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2.3. The dual volume
Just as for polyhedra above, we define the dual volume of the convex core of M as

V ∗
C = VC − 1

2
Lμ(λ).

LEMMA 2.2 (The dual Bonahon-Schläfli formula)
The first-order variation of V ∗ under a first-order variation of M is given by

dV ∗
C = −1

2
L′

μ(λ).

This formula has a very simple interpretation in terms of the geometry of Teichmüller
space: up to the factor −1/2, dV ∗ is equal to the pullback by δ of the Liouville form
of the cotangent bundle T ∗TH . Note also that this formula can be understood in an
elementary way, without reference to a transverse Hölder distribution: the measured
lamination λ is fixed, and only the hyperbolic metric μ varies. The proof we give
here, however, is based on Lemma 2.1 and thus on the whole machinery developed
in [B3].

Theorem 1.4 is a direct consequence of Lemma 2.2; since dV ∗
C coincides with

the Liouville form of T ∗TH (∂N) on i(G(N)), it follows immediately that i(G(N)) is
Lagrangian for the symplectic form ωH on T ∗TH (∂N).

Proof of Lemma 2.2
Thanks to Lemma 2.1, we only have to show a purely 2-dimensional statement, valid
for any closed surface S of genus at least 2; that is, the function

L : T × ML → R

(μ, λ) �→ Lμ(λ)

admits directional derivatives, and its derivative with respect to a tangent vector
(μ′, λ′, ) is equal to

Lμ(λ)′ = L′
μ(λ) + Lμ(λ′). (4)

Two special cases of this formula were proved by Bonahon: the case when μ is kept
constant [B2], and the case when λ is kept constant [B1].

To prove equation (4), suppose that μt, λt depend on a real parameter t chosen so
that the derivatives μ′

t , λ
′
t exist for t = 0, with

dμt

dt |t=0
= μ′,

dλt

dt |t=0
= λ′.
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We can also suppose that (mt ) is a smooth curve for the differentiable structure of
Teichmüller space. We can then decompose as follows.

Lμt
(λt ) − Lμ0 (λ0)

t
= Lμt

(λt ) − Lμ0 (λt )

t
+ Lμ0 (λt ) − Lμ0 (λ0)

t
.

The second term on the right-hand side converges to Lμ(λ′) by [B2], so we now
concentrate on the first term.

To prove that the first term converges to L′
μ(λ), it is sufficient to prove that L′

μ(λ)
depends continuously on μ, μ′ and on λ. This can be proved by a nice and simple
argument suggested to us by Bonahon. Here μ can be replaced by a representation
of the fundamental group of S in PSL2(C), as in [B1]. For fixed λ, the function
μ → Lμ(λ) is then holomorphic in μ, and continuous in λ. Since it is holomorphic,
it is continuous with respect to μ and to μ′, and the result follows. �

2.4. A cotangent space interpretation
Here we sketch for completeness the argument showing that the map δ : TH ×
ML → T ∗TH defined in the introduction is a homeomorphism. This is equivalent
to the following statement.

LEMMA 2.3
Let m0 ∈ TH be a hyperbolic metric on S. For each cotangent vector u ∈ T ∗

m0
TH ,

there exists a unique l ∈ ML such that the differential of the function m �→ dLm(l)
is equal to u at m0.

Proof
Wolpert [Wo1] discovered that the Weil-Petersson symplectic form on TH has a
remarkably simple form in Fenchel-Nielsen coordinates,

ωWP =
∑

i

dLi ∧ dθi,

where the sum is over the simple closed curves in the complement of a pants decom-
position of S. A direct consequence is that, given a weighted multicurve w on S, the
dual for ωWP of the differential of the length Lw of w is equal to the infinitesimal
fractional Dehn twist along w.

This extends when w is replaced by a measured lamination λ, with the infinitesimal
fractional Dehn twist replaced by the earthquake vector along λ (see [Wo2], [SB]). So
the Weil-Petersson symplectic form provides a duality between the differential of the
lengths of measured laminations and the earthquake vectors.



xxx dmj8255 August 12, 2009 22:8

14 KRASNOV and SCHLENKER

Moreover, the earthquake vectors associated to the elements of ML cover TmTH

for all m ∈ TH (see [Ke1]), so it follows that the differentials of the lengths of the
measured laminations cover T ∗

mTH . �

Note that this argument extends directly to hyperbolic surfaces with cone singularities,
when the cone angles are less than π . In that case, the fact that earthquake vectors still
span the tangent to Teichmüller space follows from [BS].

2.5. Proof of Lemma 1.1
Lemma 1.1 is mostly a consequence of the tools developed by Bonahon in [B1] and
[B2]. We first recall some of his results. Given a lamination λ on S, he defined the
space H(λ, R) of real-valued transverse cocycles for λ and proved that it is related to
measured laminations in interesting ways.
• If l ∈ ML, and if λ is a lamination which contains the support of l, then l

defines a real-valued transverse cocycle on λ (see [B1]).
• Transverse cocycles can be used to define a polyhedral tangent cone to ML

at a point l. Given a lamination λ containing the support of l, the transverse
cocycles on λ satisfying a positivity condition (essentially, that the transverse
measure remains positive) can be interpreted as tangent vectors to ML at
l (i.e., velocities at 0 of curves in ML starting from l). The laminations
containing the support of l therefore correspond to the faces of the tangent
cone to ML at l.

• There is a well-defined notion of length of a transverse cocycle h for a hyper-
bolic metric m on S, extending the length of a measured lamination. If l ∈ ML,
then Lm is tangentiable at l; if λ is a lamination containing the support of l,
and if h ∈ H(λ, R), then Lm(h) is equal to the first-order variation of Lm(l)
under the deformation of l given by h.

Transverse cocycles are also related to pleated surfaces.
• Transverse cocycle provide shear coordinates on Teichmüller space. Given a

reference hyperbolic metric m0 ∈ TH and another hyperbolic metric m ∈ TH ,
there is a unique element h ∈ H(λ, R) such that shearing m0 along h yields
m. The elements of H(λ, R) which can be obtained in this way have a simple
characterization in terms of a positivity condition.

• Transverse cocycles also describe the bending of a pleated surface:
H(λ, R/2πZ) is in one-to-one correspondence with the space of equivariant
pleated surfaces of given induced metrics for which the support of the pleating
locus is contained in λ.

• Pleated surfaces with a pleating locus contained in λ are associated to
a complex-valued transverse cocycle h ∈ H(λ, C/2πiZ), with real part
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describing the induced metric (in terms of its shear coordinates with respect to
a given reference metric) and imaginary part describing the bending measure.

Each pleated equivariant surface in H 3 defines a representation of its fundamental
group in PSL(2, C). In the neighborhood of a convex pleated surface, this representa-
tion is the holonomy representation of a complex projective structure. If the induced
metric and measured bending lamination of the convex pleated surface are m ∈ TH

and l ∈ ML, respectively, if λ contains the support of l, and if l is the projection
of l in H(λ, R/2πZ), then there is a well-defined map from H(λ, C/2πiZ) to CP
defined in the neighborhood of il sending a complex-valued transverse cocycle h to
the complex projective structure σ of the pleated surface obtained from h. This map
is differentiable; taking its tangent at il yields a map

φλ : H(λ, C) → Tσ CP.

THEOREM 2.4 ([B4])
The map φλ is complex-linear (with respect to the complex structure on CP).

A pleated surface is also described, however, by its induced metric and measured
bending lamination and thus by an element of TH × ML. Using the map δ :
TH × ML → T ∗TH defined above, we obtain a map, defined in the neighborhood
of il, from H(λ, C/2πiZ) to T ∗TH which by definition is also differentiable. Taking
the differential of this map yields another linear map

ψλ : H(λ, C) → T ∗TH .

The definitions (and the arguments of [B1], [B4]) then show that φλ ◦ ψ−1
λ is

partially equal to the tangent map of Gr ◦ δ−1, in the following sense. Let m ∈ TH ,
and let u ∈ T ∗

mTH , and let (m, l) = δ−1(m, u) ∈ TH × ML. Let then (ṁ, u̇) ∈
T(m,u)(T ∗TH ), and let l̇ be the tangent vector to ML at l corresponding to u̇. There
is then a lamination λ containing the support of both l and l̇, and φλ ◦ ψ−1

λ (ṁ, u̇) =
T (Gr◦δ−1)(ṁ, u̇). Its definition shows that φλ◦ψ−1

λ is linear. So, to prove that Gr◦δ−1

is differentiable, it is sufficient to show that φλ ◦ ψ−1
λ does not depend on λ.

We now consider a fixed lamination λ containing the support of l and a vari-
ation (ṁ, u̇) inducing a variation l̇ of l with support contained in λ. To (ṁ, l̇) is
associated, through Bonahon’s shear-bend coordinates, a complex transverse cocycle
h ∈ H(λ, C), with real part h0 corresponding to ṁ and imaginary part h1 correspond-
ing to l̇. The first-order variation of σ corresponding to ṁ, φλ ◦ψ−1

λ (ṁ, 0) is shown in
[B4] to be independent of λ. The following is clearly equivalent to [B4, Lemma 13].

LEMMA 2.5 (Bonahon)
For fixed l ∈ ML, the restriction map Grl : TH → CP is C1.
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We now focus on l̇ and on the corresponding imaginary part h1 of the transverse
cocycle h. We have already recalled that Lm(h1) = Lm(l)′, where the prime denotes
the first-order variation under the tangent vector to ML at l corresponding to h1. It
follows that for any m′ ∈ TmTH , we have u̇(m′) = dL·(h1)(m′). However, it was
proved in [B1] that dL·(h1)(m′) = ωWP (m′, eh1 ), where ωWP is the Weil-Petersson
symplectic form on TH and eh1 is the tangent vector to TH at m corresponding to
the infinitesimal shear along h1. So eh1 is the dual of u̇ for the symplectic form ωH on
T ∗TH . We write this as eh1 = u̇∗ (the star stands for the Weil-Petersson symplectic
duality).

We can now apply Theorem 2.4, and we conclude that

(φλ ◦ ψ−1
λ )(0, u̇) = φλ(ih1) = iφλ(h1) = i(φλ ◦ ψ−1

λ )(eh1, 0)

= i(φλ ◦ ψ−1
λ )(u̇∗, 0) = id Grl(u̇

∗). (5)

In particular, (φλ ◦ ψ−1
λ )(0, u̇) is independent of λ by Lemma 1.1, so that φλ ◦ ψ−1

λ is
linear, making Gr ◦ δ−1 differentiable.

The fact that Gr ◦ δ−1 is actually C1 then follows from Theorem 2.4 applied
twice, once for the first-order variations of the metric, and another time (through the
composition (5)) for the first-order variation of u̇ (resp., l̇).

Note that this map Gr ◦ δ−1 is probably not C2. This is indicated by the fact,
shown by Bonahon in [B4], that the composition of the inverse grafting map Gr−1 :
CP → TH × ML with the projection on the first factor is C1 but not C2.

3. The renormalized volume

3.1. Definition
We recall in this section, very briefly, the definition and one key property of the
renormalized volume of a quasi-Fuchsian—or, more generally, a geometrically finite—
hyperbolic 3-manifold (more details can be found in [KS2]). The definition can be
made as follows. Let M be a quasi-Fuchsian manifold, and let K be a compact subset
which is geodesically convex (any geodesic segment with endpoints in K is contained
in K), with smooth boundary.

Definition 3.1
We call

W (K) = V (K) − 1

4

∫
∂K

Hda,

where H is the mean curvature of the boundary of K .
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K defines a metric I ∗ on the boundary of M . For ρ > 0, let Sρ be the set of points
at distance ρ from K; then (Sρ)ρ>0 is an equidistant foliation of M \ K . It is then
possible to define a metric on ∂M as

I ∗ := lim
ρ→∞

2e−2ρIρ, (6)

where Iρ is the induced metric on Sρ . Then I ∗ is in the conformal class at infinity of
M , which we call c∞.

Defined in this way, both I ∗ and W are functions of the convex subset K . However,
K is itself uniquely determined by I ∗, and it is possible to consider W as a function
of I ∗, considered as a metric in ∂M in the conformal class at infinity c∞, although
such a metric in c∞ is not necessarily associated to a convex subset of M . The reason
for this is that each metric I ∗ ∈ c∞ is associated to a unique foliation of a neighbor-
hood of infinity in M by equidistant convex surfaces (Sρ)ρ≥ρ0 (see [E2], [E1], [S] or
Theorem 5.8 in [KS2]). This foliation does not always extend to ρ → 0, which would
mean that it is the equidistant foliation from a convex subset with boundary S0.

To understand the construction of W in this setting, we need to revert to another
definition of the renormalized volume as it is defined for higher-dimensional confor-
mally compact Einstein manifolds. If Vρ is the volume of the set of points of M at
distance at most ρ from K , then Vρ behaves as ρ → ∞ as

Vρ = V2e
2ρ + V1ρ + V0 + ε(ρ),

where lim0 ε = 0. Epstein proved in [PP, Appendix] (see also [KS1, Lemma 4.5])
that V0 = W (as defined above) is equal to V0, while V1 depends only on the topology
of M (it is equal to −πχ(∂M)). Suppose now that K is replaced by

Kr = {
x ∈ M | d(K, x) ≤ r

}
.

Let V ρ be the volume of the set of points at distance at most ρ from Kr ; then clearly,

V ρ = Vρ+r = V2e
2(ρ+r) + V1(ρ + r) + V0 = (V2e

2r )e2ρ + V1ρ + (V0 + V1r) + ε(ρ),

so that V0 is replaced by V 0 = V0 + V1r . This means that W can be read off from any
of the surfaces Vρ , since, for any ρ > 0, we have

W = Vρ − 1

4

∫
Sρ

Hda + πχ(∂M)ρ.

Starting from a metric I ∗ in the conformal class at infinity c∞, there is an associated
equidistant foliation by convex surfaces (Sρ)ρ≥ρ0 of a neighborhood of infinity in M ,
and the previous formula can be used to define W even if the foliation does not extend
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to ρ → 0. As a consequence, W defines a function, still called W , which, to any
metric I ∗ ∈ c∞, associates a real number W (I ∗).

LEMMA 3.2 (see [Kr], [TT], [ZT])
Over the space of metrics I ∗ ∈ c∞ of fixed area, W has a unique maximum, which is
obtained when I ∗ has constant curvature.

This, along with the Bers simultaneous uniformization theorem, defines a function
VR : T(∂M) → R, sending a conformal structure on the boundary of M to the
maximum value of W (I ∗) when I ∗ is in the fixed conformal class of metrics and is
restricted to have area equal to −2πχ(∂M). This number VR is called the renormalized
volume of M .

3.2. The first variation of the renormalized volume
The first variation of the renormalized volume involves a kind of Schläfli formula, in
which some terms appear that need to be defined. One such term is the second funda-
mental form at infinity II ∗ associated to an equidistant foliation in a neighborhood of
infinity, as in Section 3.1. The definition comes from the following lemma, which is
taken from [KS2].

LEMMA 3.3
Consider an equidistant foliation (Sρ) as above, recalling that Iρ is the induced
metric on Sρ and that I ∗ is the metric on the boundary at infinity defined by I ∗ =
limρ→∞ e−ρIρ . There is a unique bundle morphism B∗ : T ∂M → T ∂M , self-adjoint
for I ∗, such that

Iρ = 1

2
(e2ρI ∗ + 2II ∗ + e−2ρIII ∗),

where II ∗ = I ∗(B∗·, ·) and III ∗ = I ∗(B∗·, B∗·).

The first variation of W under a deformation of M or of the equidistant foliation is
given by another lemma from [KS2], which can be seen as a version at infinity of the
Schläfli formula for hyperbolic manifolds with boundary found in [RS1], [RS2].

LEMMA 3.4
Under a first-order deformation of the hyperbolic metric on M or of the equidistant
foliation close to infinity, the first-order variation of W is given by

dW = −1

4

∫
∂M

〈
dII ∗ − H ∗

2
dI ∗, I ∗

〉
da∗,

where H ∗ := tr (B∗) and da∗ is the area form of I ∗.
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The second fundamental form at infinity, II ∗, is actually quite similar to the usual
second fundamental form of a surface. It satisfies the Codazzi equation

d∇∗
II ∗ = 0,

where ∇∗ is the Levi-Civita connection of I ∗, and it satisfies a modified form of the
Gauss equation,

trI ∗(II ∗) = −K∗,

where K∗ is the curvature of I ∗. The proof can again be found in [KS2, Section 5].
A direct consequence is that, if I ∗ has constant curvature −1, the traceless part II ∗

0

of II ∗ is the real part of a holomorphic quadratic differential on ∂M for the complex
structure of I ∗. In addition, the first-order variation of VR follows from Lemma 3.4.

LEMMA 3.5
In a first-order deformation of M , we have

dVR = −1

4

∫
∂M

〈dI ∗, II ∗
0 〉da∗.

This statement is very close in spirit to Lemma 2.2, with the dual volume of the convex
core replaced by the renormalized volume. The right-hand term is, up to the factor
−1/4, the Liouville form on the cotangent bundle T ∗TC(∂M).

Proof A simple proof of Theorem 1.5
We have just seen that dVR coincides (up to the constant −1/4) with the Liouville
form of T ∗TC(∂M) on j (G). It follows that the symplectic form of T ∗TC(∂M)
vanishes on j (G(∂M)), which is precisely the statement of the theorem. �

4. The relative volume of hyperbolic ends

4.1. Definition
We consider in this part yet another notion of volume, defined for (geometrically finite)
hyperbolic ends rather than for hyperbolic manifolds. Here we consider a hyperbolic
end M . The definition of the renormalized volume can be used in this setting, leading
to the relative volume of the end. We call a geodesically convex subset K ⊂ M a
collar if it is relatively compact and contains the metric boundary ∂0M of M (possibly
all geodesically convex relatively compact subsets of M are collars, but it is not
necessary to consider this question here). Then ∂K ∩ M is a locally convex surface
in M .
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The relative volume of M is related both to the (dual) volume of the convex core
and to the renormalized volume; it is defined as the renormalized volume, but starting
from the metric boundary of the hyperbolic end. We follow the same path as for the
renormalized volume, and we start from a collar K ⊂ M . We set

W (K) = V (K) − 1

4

∫
∂K

Hda + 1

2
Lμ(λ),

where H is the mean curvature of the boundary of K , μ is the induced metric on the
metric boundary of M , and λ is its measured bending lamination.

As for the renormalized volume, we define the metric at infinity as

I ∗ := lim
ρ→∞

2e−2ρIρ,

where Iρ is the induced metric on the set Sρ of points at distance ρ from K and the
(implicit) identification between Sρ ′ and Sρ , for ρ ′ > ρ, is by normal projection on Sρ .
The conformal structure of I ∗ is equal to the canonical conformal structure at infinity
c∞ of M .

Here again, W only depends on I ∗. Not all metrics in c∞ can be obtained from a
compact subset of M; however, all metrics do define an equidistant foliation close to
infinity in M , and it remains possible to define W (I ∗) even when I ∗ is not obtained
from a convex subset of M . So W defines a function, still called W , from the conformal
class c∞ to R.

LEMMA 4.1
For a fixed area of I ∗, W is maximal exactly when I ∗ has constant curvature.

The proof follows directly from the arguments used in [KS2, Section 7], so we do
not repeat the proof here. This proof takes place entirely on the boundary at infinity,
so considering a hyperbolic end or a geometrically finite hyperbolic manifold has no
impact.

Definition 4.2
The relative volume VR of M is W (I ∗) when I ∗ is the hyperbolic metric in the
conformal class at infinity on M .

4.2. The first variation of the relative volume
PROPOSITION 4.3
Under a first-order variation of the hyperbolic end, the first-order variation of the
relative volume is given by

V ′
R = 1

2
L′

μ(λ) − 1

4

∫
∂∞M

〈I ∗′, II ∗
0 〉da∗. (7)
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The proof is based on the arguments described above, both for the first variation of
the renormalized volume and for the first variation of the volume of the convex core.
Some preliminary definitions are required.

Definition 4.4
A polyhedral collar in a hyperbolic end M is a collar K ⊂ M such that ∂K ∩ M is a
polyhedral surface.

LEMMA 4.5
Let K be a polyhedral collar in M , and let Le, θe be the length and the exterior dihedral
angle of edge e in ∂K ∩ M . In any deformation of M , the first-order variation of the
measured bending lamination on the metric boundary of M is given by a transverse
Hölder distribution λ′. The first-order variation of the volume of K is given by

2V ′ =
∑

e

Ledθe − Lμ(λ′).

Proof
This is very close in spirit to the main result of [B3], with the difference that here we
consider a compact domain bounded on one side by a pleated surface, on the other
by a polyhedral surface. The argument of [B3] can be followed line by line, keeping
one surface polyhedral (of fixed combinatorics, say), while on the other boundary
component the approximation arguments of [B3] can be used. �

COROLLARY 4.6
Let V ∗(K) := V (K) + (1/2)Lμ(λ); then, in any deformation of K

2V ∗′ =
∑

e

Ledθe + L′
μ(λ).

Proof
We have seen in the proof of Lemma 2.1 that Lμ(λ)′ = L′

μ(λ) + Lμ(λ′).
So the corollary follows from Lemma 4.5 exactly as Lemma 2.2 follows from
Lemma 2.1. �

It is possible to define the renormalized volume of the complement of a polyhedral
collar in a hyperbolic end, in the same way as for quasi-Fuchsian manifolds above. Let
C be a closed polyhedral collar in the hyperbolic end M , and let D be its complement.
Let K ′ be a compact geodesically convex subset of M containing C in its interior, and
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let K := K ′ ∩ D. We define

W (K) = V (K) − 1

4

∫
D∩∂K

Hda.

In addition, K defines a metric at infinity, I ∗, according to (6), and the arguments
explained after Lemma 3.1 show that K is uniquely determined by I ∗, so that W can
be considered as a function of I ∗, a metric in the conformal class at infinity of M .
(In general, as explained in Section 3.1, I ∗ only defines an equidistant foliation near
infinity which might not extend all the way to K .) The first-variation of W with respect
to I ∗ shows (as in [KS2]) that W (I ∗) is maximal (under the constraint that I ∗ has
fixed area) if and only if I ∗ has constant curvature. We then define the renormalized
volume VR(D) as the value of this maximum.

LEMMA 4.7
Under a first-order deformation of D, the first-order variation of its renormalized
volume is given by

VR(D)′ = −1

4

∫
∂∞D

〈
II ∗

0 , I ∗′〉
da∗ + 1

2

∑
e

Leθ
′
e.

Here Le and θe are the length and exterior dihedral angle of edge e of the (polyhedral)
boundary of D.

Proof
The proof can be obtained by following the argument used in [KS2]; the fact that D

is not complete and has a polyhedral boundary just adds some terms relative to this
polyhedral boundary in the variations formulae. �

Proof of Proposition 4.3
The statement follows directly from Corollary 4.6 applied to a polyhedral collar and
from Lemma 4.7 applied to its complement, since the terms corresponding to the
polyhedral boundary between the two cancel. �

4.3. Proof of Theorem 1.2
Since hyperbolic ends are in one-to-one correspondence with CP1-structures, we can
consider the relative volume VR as a function on CP. Let βH (resp., βC) be the
Liouville form on T ∗TH (resp., T ∗TC). We can consider the composition δ ◦ Gr−1 :
CP → T ∗TH , it is C1, and it pulls back βH as

(δ ◦ Gr−1)∗βH = L′
μ(λ).
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Under the identification of CP with T ∗TC through the Schwarzian derivative, the
expression of βC is

βC =
∫

∂∞M

〈I ∗′
, II ∗

0 〉da∗.

So Proposition 4.3 can be formulated as

dVR = 1

2
(δ ◦ Gr−1)∗βH − 1

4
βC,

and it follows that 2(δ ◦ Gr−1)∗ωH = ωC . �

4.4. The Fuchsian slice versus Bers slices
Here we prove for the reader’s convenience that the identification considered here
between CP and T ∗TC , based on the Fuchsian slice, determines the same symplectic
structure on CP as the identification based on a Bers slice (as used, e.g., in [K]). This
can be compared to [Mc, Theorem 9.2], where a related result is proved (by different
arguments).

We consider a fixed conformal structure c− ∈ T. Then, for each c ∈ T, we
define σc−(c) as the complex projective structure on the upper boundary at infinity of
the (unique) quasi-Fuchsian manifold for which the lower conformal metric at infinity
is c− and the upper conformal metric at infinity is c. The Schwarzian derivative of
the identity map from (S, σc−) to (S, σ ) is a holomorphic quadratic differential on
S, which can be considered as a point of the (complexified) cotangent space T ∗

c TC .
Taking its real part defines a map from CP to T ∗TC , which we can use to pull back
the cotangent symplectic map on T ∗TC to a symplectic form ωc− on CP. Recall that
the symplectic form ωC considered in this article is obtained in the same manner, but
using the Fuchsian complex projective structure σ0 rather than the complex projective
structure of the Bers slice σc− .

LEMMA 4.8
The two symplectic forms are equal: ωc− = ωC .

Proof
Consider σ ∈ CP, let c be its underlying complex structure, let α0(σ ) = S(Id :
(S, σ0(c)) → (S, σ )), and let αc−(σ ) = S

(
Id : (S, σc−(c)) → (S, σ )

)
. Both α0(σ )

and αc−(σ ) can be considered as vectors in the (complexified) cotangent space T ∗
c TC .

The properties of the Schwarzian derivative under composition show that α0(σ ) −
αc−(σ ) = S

(
Id : (S, σ0(c)) → (S, σc−(c))

)
. So α0(σ ) − αc−(σ ) depends only on

the underlying complex structure c of σ (and on c−), and it defines a section of the
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complexified cotangent bundle T ∗TC . By definition this is precisely the section called
θc− in [KS2, text following Theorem 8.8].

Still by construction, ωc− − ωC = Re(dαc− − dα0) = Re(dθc−). According to
[KS2, Proposition 8.9], dθc− does not depend on c−. So dθc− can be computed by
choosing c− = c (fixed). An explicit computation is possible (see [KS2, Proposi-
tion 8.10]), which shows that, for any two tangent vectors X, Y ∈ TcTC , we have

(
DXRe(θc−)

)
(Y ) = 〈X, Y 〉WP ,

and it follows that d(Re(θc−)) = 0. So ωc− = ω0 as claimed. �
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