An algorithm for producing median formulas for Boolean functions
Reed-Muller Workshop 2011

Miguel Couceiro
Joint work with E. Lehtonen, J.-L. Marichal, T. Waldhauser

University of Luxembourg

May 2011
A Boolean function is a map $f : \{0, 1\}^n \rightarrow \{0, 1\}$, for $n \geq 1$, called the arity of f.
A Boolean function is a map $f : \{0, 1\}^n \to \{0, 1\}$, for $n \geq 1$, called the arity of f.

We use the notations $\Omega^{(n)} = \{0, 1\}\{0,1\}^n$ and $\Omega = \bigcup_{n \geq 1} \Omega^{(n)}$.
A Boolean function is a map $f : \{0, 1\}^n \to \{0, 1\}$, for $n \geq 1$, called the arity of f.

We use the notations $\Omega^{(n)} = \{0, 1\}^{\{0,1\}^n}$ and $\Omega = \bigcup_{n \geq 1} \Omega^{(n)}$.

For a fixed arity n, the n different projections (variables) $(a_1, \ldots, a_n) \mapsto a_i$ are denoted by x_1, \ldots, x_n.

For a fixed arity n, the n different negated projections are denoted by $\overline{x_1}, \ldots, \overline{x_n}$.
A Boolean function is a map $f : \{0, 1\}^n \rightarrow \{0, 1\}$, for $n \geq 1$, called the arity of f.

We use the notations $\Omega^{(n)} = \{0, 1\}\{0,1\}^n$ and $\Omega = \bigcup_{n \geq 1} \Omega^{(n)}$.

For a fixed arity n, the n different projections (variables) $(a_1, \ldots, a_n) \mapsto a_i$ are denoted by x_1, \ldots, x_n.

For a fixed arity n, the n different negated projections are denoted by $\overline{x_1}, \ldots, \overline{x_n}$.

For each arity n, we denote by

- $\mathbf{0}$ the 0-constant functions.
- $\mathbf{1}$ the 1-constant functions.
The composition of an n-ary function f with m-ary functions g_1, \ldots, g_n is the m-ary Boolean function $f(g_1, \ldots, g_n)$ given by

$$f(g_1, \ldots, g_n)(a) = f(g_1(a), \ldots, g_n(a))$$

for every $a \in \{0, 1\}^m$.
The composition of an \(n \)-ary function \(f \) with \(m \)-ary functions \(g_1, \ldots, g_n \) is the \(m \)-ary Boolean function \(f(g_1, \ldots, g_n) \) given by

\[
f(g_1, \ldots, g_n)(a) = f(g_1(a), \ldots, g_n(a)) \quad \text{for every} \quad a \in \{0, 1\}^m.
\]

For \(K, J \subseteq \Omega \) the class composition of \(K \) with \(J \), is defined by

\[
K \circ J = \{ f(g_1, \ldots, g_n) : f \text{ \(n \)-ary in } K, \ g_1, \ldots, g_n \text{ \(m \)-ary in } J \}.
\]
The composition of an n-ary function f with m-ary functions g_1, \ldots, g_n is the m-ary Boolean function $f(g_1, \ldots, g_n)$ given by

$$f(g_1, \ldots, g_n)(a) = f(g_1(a), \ldots, g_n(a))$$

for every $a \in \{0, 1\}^m$.

For $K, J \subseteq \Omega$ the class composition of K with J, is defined by

$$K \circ J = \{f(g_1, \ldots, g_n): f \text{ n-ary in } K, \ g_1, \ldots, g_n \text{ m-ary in } J\}.$$

A (Boolean) clone is a class $C \subseteq \Omega$ containing all projections and satisfying $C \circ C = C$.
Known results about clones

- Clones constitute an algebraic lattice which was completely classified by Emil Post (1941).
- The class Ω of all Boolean functions is the largest clone.
- The class I_c of all projections is the smallest clone.
Known results about clones

- Clones constitute an algebraic lattice which was completely classified by Emil Post (1941).
- The class Ω of all Boolean functions is the largest clone.
- The class I_c of all projections is the smallest clone.
- Each clone C is finitely generated:
 \[
 C = [K], \quad \text{for some finite } K \subseteq \Omega.
 \]
Known results about clones

- Clones constitute an algebraic lattice which was completely classified by Emil Post (1941).

- The class Ω of all Boolean functions is the largest clone.

- The class I_c of all projections is the smallest clone.

- Each clone C is finitely generated:

 $$ C = [K], \text{ for some finite } K \subseteq \Omega. $$

- Each clone C has a dual clone $C^d = \{f^d : f \in C\}$, where

 $$ f^d(x_1, \ldots, x_n) = f(\overline{x_1}, \ldots, \overline{x_n}). $$
Examples: Essentially Unary Clones

- $I_c = [\cdot]$: Clone of projections.
- $I_0 = [0]$: Clone of projections and 0-constant functions.
- $I_1 = [1]$: Clone of projections and 1-constant functions.
- $I = [0, 1]$: Clone of projections and constant functions.
- $I^* = [\bar{x}]$: Clone of projections and negated projections.
- $\Omega^{(1)} = [0, 1, \bar{x}]$: Clone of essentially unary functions.
We say that C is a **minimal clone** if it covers I_c.

- $\Lambda = [\land]$: Clone of conjunctions.
- $\lor = [\lor]$: Clone of disjunctions.
- $L_c = [\oplus_3]$: Clone of constant-preserving linear functions, where $\oplus_3 = x_1 + x_2 + x_3$.
- $SM = [\text{median}]$: Clone of self-dual monotone functions:

 $$f = f^d \text{ and } f(a) \leq f(b) \text{ whenever } a \leq b.$$
Known results about composition of clones

- The composition of clones is associative.

- The composition $C_1 \circ C_2$ of clones is not always a clone, e.g., $I^* \circ \Lambda$ is not a clone.

- The composition of clones was completely described by C., Foldes, Lehtonen (2006).

- Ω can be factorized into a composition of minimal clones.
Descending Irredundant Factorizations of Ω

- **D**: $\Omega = V \circ \Lambda \circ I^*.$

- **C**: $\Omega = \Lambda \circ V \circ I^*.$

- **P**: $\Omega = L_c \circ \Lambda \circ I.$

- **P^d**: $\Omega = L_c \circ V \circ I.$

- **M**: $\Omega = SM \circ \Omega^{(1)}.$
A normal form system (NFS) is a pair \((\{C_i\}_{1 \leq i \leq k}, \{\gamma_j\}_{1 \leq j \leq k-1}) \) satisfying the following conditions:

- \(\Omega = C_1 \circ \cdots \circ C_{k-1} \circ C_k \), where \(C_k \subseteq \Omega^{(1)} \),

- \(C_i \) is generated by \(\gamma_i \notin C_k \) for \(1 \leq i \leq k - 1 \),

- \(\gamma_i \neq \gamma_j \) for \(i \neq j \).
An \(n \)-ary formula of a NFS \((\{C_i\}_{1 \leq i \leq k}, \{\gamma_j\}_{1 \leq j \leq k-1}) \) is a string over \(C_k^{(n)} \cup \{\gamma_j\}_{1 \leq j \leq k-1} \) given by the recursion:

1. The elements of \(C_k^{(n)} \) are \(n \)-ary formulas.

2. If \(\gamma_i \) is \(m \)-ary and \(a_1, \ldots, a_m \) are \(n \)-ary formulas without \(\gamma_j \) for \(i > j \), then \(\gamma_i a_1 \cdots a_m \) is an \(n \)-ary formula.

A formula of a NFS is an \(n \)-ary formula \(\Phi \) for some \(n \), and its length \(|\Phi| \) is the number of symbols occurring in it.
Observe that...
Every n-ary formula represents an n-ary function, and every n-ary function is represented by an n-ary formula.

Formulas representing the negation \overline{x}:

- M, D, C: \overline{x},
- P, P^d: $\oplus_3 x01$.
Let A be a NFS and denote by F_A the set of formulas of A.

The A-complexity of f is defined by $C_A(f)$, as

$$C_A(f) := \min\{|\Phi| : \Phi \in F_A, \Phi \text{ represents } f\}.$$

A-complexities of the negation \overline{x}:

- $C_M(\overline{x}) = C_D(\overline{x}) = C_C(\overline{x}) = 1,$
- $C_P(\overline{x}) = C_{Pd}(\overline{x}) = 4.$
Representations and A-complexities of median

Formulas representing median:

\mathbf{M}: $\text{median}x_1 x_2 x_3$,

\mathbf{D}: $\lor \lor \land x_1 x_2 \land x_1 x_3 \land x_2 x_3$,

\mathbf{C}: $\land \land \lor x_1 x_2 \lor x_1 x_3 \lor x_2 x_3$,

\mathbf{P}: $\oplus_3 \land x_1 x_2 \land x_1 x_3 \land x_2 x_3$,

$\mathbf{P^d}$: $\oplus_3 \oplus_3 \lor x_1 x_2 \lor x_1 x_3 \lor x_2 x_3 01$.
Formulas representing median:

\[M : \text{median} x_1 x_2 x_3, \]
\[D : \lor \lor \land x_1 x_2 \land x_1 x_3 \land x_2 x_3, \]
\[C : \land \land \lor x_1 x_2 \lor x_1 x_3 \lor x_2 x_3, \]
\[P : \bigoplus_3 \land x_1 x_2 \land x_1 x_3 \land x_2 x_3, \]
\[P^d : \bigoplus_3 \bigoplus_3 \lor x_1 x_2 \lor x_1 x_3 \lor x_2 x_3 01. \]

A-complexities of median:

\[C_M(\text{median}) = 4, \quad C_D(\text{median}) = C_C(\text{median}) = 11, \]
\[C_P(\text{median}) = 10, \quad C_{P^d}(\text{median}) = 13. \]
We say that A is \textit{polynomially as efficient as} B, denoted $A \preceq B$, if there is a polynomial p with integer coefficients such that

$$C_A(f) \leq p(C_B(f)) \quad \text{for all } f \in \Omega.$$
Comparison of NFSs’

We say that A is **polynomially as efficient as** B, denoted $A \preceq B$, if there is a polynomial p with integer coefficients such that

$$C_A(f) \leq p(C_B(f)) \quad \text{for all } f \in \Omega.$$

Fact

The relation \preceq is a quasi-order on any set of NFSs’.
Comparison of NFSs’

We say that A is **polynomially as efficient as** B, denoted $A \preceq B$, if there is a polynomial p with integer coefficients such that

$$C_A(f) \leq p(C_B(f)) \quad \text{for all } f \in \Omega.$$

Fact

The relation \preceq is a quasi-order on any set of NFSs’.

If $A \not\preceq B$ and $B \not\preceq A$ holds, then A and B are **incomparable**.

If $A \preceq B$ but $B \not\preceq A$, then A is **polynomially more efficient than** B.
Comparison of NFSs’ (cont.)

Theorem (C., Foldes, Lehtonen)

1. D, C, P, and P^d are incomparable.

2. M is polynomially more efficient than D, C, P, P^d.
A function $f : \{0, 1\}^n \rightarrow \{0, 1\}$ is median decomposable if for every $i \in \{1, \ldots, n\}$,

$$f(x) = \text{median}(f(x_i^0), x_i, f(x_i^1)),$$

where $x_i^c = (x_1, \ldots, x_{i-1}, c, x_{i+1}, \ldots, x_n)$.

Theorem (Tohma, C., Marichal,...)

A Boolean function $f : \{0, 1\}^n \rightarrow \{0, 1\}$ is monotone iff f is median decomposable.
Algorithm MMNF – Median normal form for monotone Boolean functions

Require: a monotone Boolean function $f : \{0, 1\}^n \rightarrow \{0, 1\}$
Ensure: a median normal form representation of f

1: if $n \geq 2$ then
2: $\alpha \leftarrow \text{MMNF}(f(x_1, \ldots, x_{n-1}, 0))$
3: $\beta \leftarrow \text{MMNF}(f(x_1, \ldots, x_{n-1}, 1))$
4: return median $\alpha x_n \beta$
5: else if $f = 0$ then
6: return 0
7: else if $f = 1$ then
8: return 1
9: else
10: return x_1
11: end if
Given $f : \{0, 1\}^n \rightarrow \{0, 1\}$, define $g_f : \{0, 1\}^{2n} \rightarrow \{0, 1\}$ as:

for all $b, c \in \{0, 1\}^n$, let

$$g_f(bc) := \begin{cases} 0 & \text{if } \text{weight}(bc) < n, \\ 1 & \text{if } \text{weight}(bc) > n, \\ f(b) & \text{if } b = \overline{c}, \\ 0 & \text{otherwise}. \end{cases}$$
Median representations of arbitrary Boolean functions

Given \(f : \{0, 1\}^n \to \{0, 1\} \), define \(g_f : \{0, 1\}^{2n} \to \{0, 1\} \) as:

for all \(b, c \in \{0, 1\}^n \), let

\[
g_f(bc) := \begin{cases}
0 & \text{if weight}(bc) < n, \\
1 & \text{if weight}(bc) > n, \\
f(b) & \text{if } b = \overline{c}, \\
0 & \text{otherwise}.
\end{cases}
\]

Facts:

For any Boolean function \(f : \{0, 1\}^n \to \{0, 1\} \),

1. \(g_f \) is monotone;

2. \(f(x_1, \ldots, x_n) = g_f(x_1, \ldots, x_n, \overline{x}_1, \ldots, \overline{x}_n) \).
Algorithm GenMNF – Median normal form for Boolean functions

Require: a Boolean function \(f : \{0, 1\}^n \rightarrow \{0, 1\} \)
Ensure: a median normal form representation of \(f \)

1: \textbf{if} \(f \) is monotone \textbf{then}
2: \quad \textbf{return} \ MMNF(f)
3: \textbf{else}
4: \quad \text{Construct} \ g_f \text{ as shown.}
5: \quad w \leftarrow \text{MMNF}(g_f)
6: \quad \textbf{for} i = 1 \text{ to } n \textbf{do}
7: \quad \quad \text{Replace each occurrence of } x_{n+i} \text{ in } w \text{ by } \overline{x_i}.
8: \quad \textbf{end for}
9: \quad \textbf{return} \ w
10: \textbf{end if}
Thank you for your attention!