Weighted Lattice Polynomials

Jean-Luc Marichal

University of Luxembourg
Lattice polynomials

Let L be a lattice with lattice operations \land and \lor

We assume that L is

- bounded (with bottom 0 and top 1)
- distributive

Definition (Birkhoff 1967)

An n-ary *lattice polynomial* is a well-formed expression involving n variables $x_1, \ldots, x_n \in L$ linked by the lattice operations \land and \lor in an arbitrary combination of parentheses

Example.

$$p(x_1, x_2, x_3) = (x_1 \land x_2) \lor x_3$$
Any lattice polynomial naturally defines a *lattice polynomial function* (l.p.f.) \(p : L^n \rightarrow L \).

Example.

\[
p(x_1, x_2, x_3) = (x_1 \land x_2) \lor x_3
\]

If \(p \) and \(q \) represent the same function, we say that \(p \) and \(q \) are equivalent and we write \(p = q \).

Example.

\[
x_1 \lor (x_1 \land x_2) = x_1
\]
Disjunctive and conjunctive forms of l.p.f.’s

Notation. \([n] := \{1, \ldots, n\}\).

Proposition (Birkhoff 1967)

Let \(p : L^n \rightarrow L\) be any l.p.f.

Then there are nonconstant set functions \(v, w : 2^n \rightarrow \{0, 1\}\), with \(v(\emptyset) = 0\) and \(w(\emptyset) = 1\), such that

\[
p(x) = \bigvee_{S \subseteq [n], v(S)=1} \bigwedge_{i \in S} x_i = \bigwedge_{S \subseteq [n], w(S)=0} \bigvee_{i \in S} x_i.
\]

Example.

\[
(x_1 \land x_2) \lor x_3 = (x_1 \lor x_3) \land (x_2 \lor x_3)
\]

\[
v(\{3\}) = v(\{1, 2\}) = 1
\]

\[
w(\{1, 3\}) = w(\{2, 3\}) = 0
\]
The set functions v and w, which generate p, are not unique:

$$x_1 \lor (x_1 \land x_2) = x_1 = x_1 \land (x_1 \lor x_2)$$

Notation. $1_S :=$ characteristic vector of $S \subseteq [n]$ in $\{0, 1\}^n$.

Proposition (Marichal 2002)

From among all the set functions v that disjunctively generate the l.p.f. p, only one is isotone:

$$v(S) = p(1_S)$$

From among all the set functions w that conjunctively generate the l.p.f. p, only one is antitone:

$$w(S) = p(1_{[n]\setminus S})$$
Consequently, any \(n \)-ary l.p.f. can always be written as

\[
p(x) = \bigvee_{S \subseteq [n]} \bigwedge_{i \in S} x_i = \bigwedge_{S \subseteq [n]} \bigvee_{i \in S} x_i
\]

\(p(1_S) = 1 \) \(p(1_{[n]\setminus S}) = 0 \)

Example. \(p(x) = (x_1 \land x_2) \lor x_3 \)

<table>
<thead>
<tr>
<th>(S)</th>
<th>(p(1_S))</th>
<th>(p(1_{[n]\setminus S}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\emptyset)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>({1})</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>({2})</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>({3})</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>({1, 2})</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>({1, 3})</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>({2, 3})</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>({1, 2, 3})</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

\[
p(x) = x_3 \lor (x_1 \land x_2) \lor (x_1 \land x_3) \lor (x_2 \land x_3) \lor (x_1 \land x_2 \land x_3)
\]

\[
p(x) = (x_1 \lor x_3) \land (x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_3)
\]
Denote by x_1, \ldots, x_n the order statistics resulting from reordering x_1, \ldots, x_n in the nondecreasing order: $x_1 \leq \cdots \leq x_n$.

Proposition (Ovchinnikov 1996, Marichal 2002)

p is a symmetric l.p.f. $\iff p$ is an order statistic

Notation. Denote by $os_k : L^n \to L$ the kth order statistic function.

$$os_k(x) := x_{(k)}$$

Then we have

$$os_k(1_S) = 1 \iff |S| \geq n - k + 1$$

$$os_k(1_{[n] \setminus S}) = 0 \iff |S| \geq k$$
We can generalize the concept of l.p.f. by regarding some variables as parameters.

Example. For $c \in L$, we consider

$$p(x_1, x_2) = (c \lor x_1) \land x_2$$

Definition

$p : L^n \to L$ is an n-ary *weighted lattice polynomial* function (w.l.p.f.) if there exist parameters $c_1, \ldots, c_m \in L$ and a l.p.f. $q : L^{n+m} \to L$ such that

$$p(x_1, \ldots, x_n) = q(x_1, \ldots, x_n, c_1, \ldots, c_m)$$
Disjunctive and conjunctive forms of w.l.p.f.'s

Proposition (Lausch & Nöbauer 1973)

Let $p : L^n \to L$ be any w.l.p.f.

Then there are set functions $v, w : 2^{[n]} \to L$ such that

$$p(x) = \bigvee_{S \subseteq [n]} \left[v(S) \land \bigwedge_{i \in S} x_i \right] = \bigwedge_{S \subseteq [n]} \left[w(S) \lor \bigvee_{i \in S} x_i \right].$$

Remarks.

- p is a l.p.f. if v and w range in $\{0, 1\}$, with $v(\emptyset) = 0$ and $w(\emptyset) = 1$.

- Any w.l.p.f. is entirely determined by 2^n parameters, even if more parameters have been considered to construct it.
Proposition (Marichal 2006)

From among all the set functions v that disjunctively generate the w.l.p.f. p, only one is isotone:

$$v(S) = p(1_S)$$

From among all the set functions w that conjunctively generate the w.l.p.f. p, only one is antitone:

$$w(S) = p(1_{[n]\setminus S})$$
Consequently, any n-ary w.l.p.f. can always be written as

$$p(x) = \bigvee_{S \subseteq [n]} \left[p(1_S) \land \bigwedge_{i \in S} x_i \right] = \bigwedge_{S \subseteq [n]} \left[p(1_{[n]\setminus S}) \lor \bigvee_{i \in S} x_i \right]$$

Example. $p(x) = (c \lor x_1) \land x_2$

<table>
<thead>
<tr>
<th>S</th>
<th>$p(1_S)$</th>
<th>$p(1_{[n]\setminus S})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>${1}$</td>
<td>0</td>
<td>c</td>
</tr>
<tr>
<td>${2}$</td>
<td>c</td>
<td>0</td>
</tr>
<tr>
<td>${1, 2}$</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

$$p(x) = (0 \land 1) \lor (0 \land x_1) \lor (c \land x_2) \lor (1 \land x_1 \land x_2)$$
$$= (c \land x_2) \lor (x_1 \land x_2)$$

$$p(x) = (1 \lor 0) \land (c \lor x_1) \land (0 \lor x_2) \land (0 \lor x_1 \lor x_2)$$
$$= (c \lor x_1) \land x_2$$
Particular case: the Sugeno integral

Let us generalize the concept of discrete Sugeno integral in the framework of bounded distributive lattices.

Definition (Sugeno 1974)

An L-valued *fuzzy measure* on $[n]$ is an isotone set function $\mu : 2^{[n]} \to L$ such that $\mu(\emptyset) = 0$ and $\mu([n]) = 1$.

The *Sugeno integral* of a function $x : [n] \to L$ with respect to μ is defined by

$$S_\mu(x) := \bigvee_{S \subseteq [n]} \left[\mu(S) \land \bigwedge_{i \in S} x_i \right]$$

Remark. A function $f : L^n \to L$ is an n-ary Sugeno integral if and only if f is a w.l.p.f. fulfilling $f(1_{\emptyset}) = 0$ and $f(1_{[n]}) = 1$.

Notation. The median function is the function \(os_2 : L^3 \to L \).

Proposition (Marichal 2006)
For any w.l.p.f. \(p : L^n \to L \), there is a fuzzy measure \(\mu : 2^{[n]} \to L \) such that
\[
p(x) = \text{median}[p(\emptyset), S_\mu(x), p([n])]
\]

Corollary (Marichal 2006)
Consider a function \(f : L^n \to L \).
The following assertions are equivalent:
- \(f \) is a Sugeno integral
- \(f \) is an idempotent w.l.p.f., that is such that \(f(x, \ldots, x) = x \)
- \(f \) is a w.l.p.f. fulfilling \(f(\emptyset) = 0 \) and \(f([n]) = 1 \).
Inclusion properties

Weighted lattice polynomials

Sugeno integrals

Lattice polynomials

Order statistics
The median based decomposition formula

Let $f : L^n \rightarrow L$ and $k \in [n]$ and define $f^0_k, f^1_k : L^n \rightarrow L$ as

\[
\begin{align*}
 f^0_k(x) & := f(x_1, \ldots, x_{k-1}, 0, x_{k+1}, \ldots, x_n) \\
 f^1_k(x) & := f(x_1, \ldots, x_{k-1}, 1, x_{k+1}, \ldots, x_n)
\end{align*}
\]

Remark. If f is a w.l.p.f., so are f^0_k and f^1_k

Consider the following system of n functional equations, called the *median based decomposition formula*

\[
f(x) = \text{median}[f^0_k(x), x_k, f^1_k(x)] \quad (k = 1, \ldots, n)
\]
Any solution of the median based decomposition formula

\[f(x) = \text{median} [f_k^0(x), x_k, f_k^1(x)] \quad (k = 1, \ldots, n) \]

is an \(n \)-ary w.l.p.f.

Example. For \(n = 2 \) we have

\[f(x_1, x_2) = \text{median} [f(x_1, 0), x_2, f(x_1, 1)] \]

with

\[f(x_1, 0) = \text{median} [f(0, 0), x_1, f(1, 0)] \quad (\text{w.l.p.f.}) \]
\[f(x_1, 1) = \text{median} [f(0, 1), x_1, f(1, 1)] \quad (\text{w.l.p.f.}) \]
The median based decomposition formula characterizes the w.l.p.f.'s

Theorem (Marichal 2006)

The solutions of the median based decomposition formula are exactly the \(n \)-ary w.l.p.f.'s.
Thanks for your attention!